156 lines
4.8 KiB
Python
156 lines
4.8 KiB
Python
|
import os
|
||
|
from functools import lru_cache
|
||
|
from subprocess import CalledProcessError, run
|
||
|
from typing import Optional, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from .utils import exact_div
|
||
|
|
||
|
# hard-coded audio hyperparameters
|
||
|
SAMPLE_RATE = 16000
|
||
|
N_FFT = 400
|
||
|
HOP_LENGTH = 160
|
||
|
CHUNK_LENGTH = 30
|
||
|
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
||
|
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
|
||
|
|
||
|
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
||
|
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
||
|
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
||
|
|
||
|
|
||
|
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||
|
"""
|
||
|
Open an audio file and read as mono waveform, resampling as necessary
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
file: str
|
||
|
The audio file to open
|
||
|
|
||
|
sr: int
|
||
|
The sample rate to resample the audio if necessary
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A NumPy array containing the audio waveform, in float32 dtype.
|
||
|
"""
|
||
|
|
||
|
# This launches a subprocess to decode audio while down-mixing
|
||
|
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||
|
# fmt: off
|
||
|
cmd = [
|
||
|
"ffmpeg",
|
||
|
"-nostdin",
|
||
|
"-threads", "0",
|
||
|
"-i", file,
|
||
|
"-f", "s16le",
|
||
|
"-ac", "1",
|
||
|
"-acodec", "pcm_s16le",
|
||
|
"-ar", str(sr),
|
||
|
"-"
|
||
|
]
|
||
|
# fmt: on
|
||
|
try:
|
||
|
out = run(cmd, capture_output=True, check=True).stdout
|
||
|
except CalledProcessError as e:
|
||
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||
|
|
||
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
||
|
|
||
|
|
||
|
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||
|
"""
|
||
|
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||
|
"""
|
||
|
if torch.is_tensor(array):
|
||
|
if array.shape[axis] > length:
|
||
|
array = array.index_select(dim=axis, index=torch.arange(length, device=array.device))
|
||
|
|
||
|
if array.shape[axis] < length:
|
||
|
pad_widths = [(0, 0)] * array.ndim
|
||
|
pad_widths[axis] = (0, length - array.shape[axis])
|
||
|
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
||
|
else:
|
||
|
if array.shape[axis] > length:
|
||
|
array = array.take(indices=range(length), axis=axis)
|
||
|
|
||
|
if array.shape[axis] < length:
|
||
|
pad_widths = [(0, 0)] * array.ndim
|
||
|
pad_widths[axis] = (0, length - array.shape[axis])
|
||
|
array = np.pad(array, pad_widths)
|
||
|
|
||
|
return array
|
||
|
|
||
|
|
||
|
@lru_cache(maxsize=None)
|
||
|
def mel_filters(device, n_mels: int, filters_path: str = None) -> torch.Tensor:
|
||
|
"""
|
||
|
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||
|
Allows decoupling librosa dependency; saved using:
|
||
|
|
||
|
np.savez_compressed(
|
||
|
"mel_filters.npz",
|
||
|
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
||
|
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
|
||
|
)
|
||
|
"""
|
||
|
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
||
|
if filters_path is None:
|
||
|
filters_path = os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
|
||
|
with np.load(filters_path, allow_pickle=False) as f:
|
||
|
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
|
||
|
|
||
|
|
||
|
def log_mel_spectrogram(
|
||
|
audio: Union[str, np.ndarray, torch.Tensor],
|
||
|
n_mels: int = 80,
|
||
|
padding: int = 0,
|
||
|
device: Optional[Union[str, torch.device]] = None,
|
||
|
):
|
||
|
"""
|
||
|
Compute the log-Mel spectrogram of
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
||
|
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
||
|
|
||
|
n_mels: int
|
||
|
The number of Mel-frequency filters, only 80 is supported
|
||
|
|
||
|
padding: int
|
||
|
Number of zero samples to pad to the right
|
||
|
|
||
|
device: Optional[Union[str, torch.device]]
|
||
|
If given, the audio tensor is moved to this device before STFT
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
torch.Tensor, shape = (80, n_frames)
|
||
|
A Tensor that contains the Mel spectrogram
|
||
|
"""
|
||
|
if not torch.is_tensor(audio):
|
||
|
if isinstance(audio, str):
|
||
|
audio = load_audio(audio)
|
||
|
audio = torch.from_numpy(audio)
|
||
|
|
||
|
if device is not None:
|
||
|
audio = audio.to(device)
|
||
|
if padding > 0:
|
||
|
audio = F.pad(audio, (0, padding))
|
||
|
window = torch.hann_window(N_FFT).to(audio.device)
|
||
|
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
||
|
magnitudes = stft[..., :-1].abs() ** 2
|
||
|
|
||
|
filters = mel_filters(audio.device, n_mels)
|
||
|
mel_spec = filters @ magnitudes
|
||
|
|
||
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
||
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||
|
log_spec = (log_spec + 4.0) / 4.0
|
||
|
return log_spec
|