FunASR/funasr/models/sense_voice/decoder.py

605 lines
20 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
import copy
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.register import tables
import base64
import gzip
from dataclasses import dataclass
from typing import Dict, Iterable, Optional
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from funasr.models.transformer.utils.mask import subsequent_mask
class LayerNorm(nn.LayerNorm):
def forward(self, x: Tensor) -> Tensor:
return super().forward(x.float()).type(x.dtype)
class Linear(nn.Linear):
def forward(self, x: Tensor) -> Tensor:
return F.linear(
x,
self.weight.to(x.dtype),
None if self.bias is None else self.bias.to(x.dtype),
)
def sense_voice_decode_forward(
self,
x: torch.Tensor,
xa: torch.Tensor,
kv_cache: Optional[dict] = None,
**kwargs,
):
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
# import pdb;pdb.set_trace()
use_padmask = self.use_padmask
hlens = kwargs.get("hlens", None)
ys_in_lens = kwargs.get("ys_in_lens", None)
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
tgt, memory = x, xa
tgt[tgt == -1] = 0
tgt = self.token_embedding(tgt) + self.positional_embedding[offset : offset + tgt.size(1)]
# tgt = self.dropout(tgt)
x = tgt.to(memory.dtype)
if use_padmask and hlens is not None:
memory_mask = (~make_pad_mask(hlens)[:, None, :]).to(memory.device)
else:
memory_mask = None
for layer, block in enumerate(self.blocks):
x = block(
x,
memory,
mask=self.mask,
memory_mask=memory_mask,
is_pad_mask=False,
is_pad_memory_mask=True,
)
x = self.ln(x)
x = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
return x
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.n_head = n_head
self.query = Linear(n_state, n_state)
self.key = Linear(n_state, n_state, bias=False)
self.value = Linear(n_state, n_state)
self.out = Linear(n_state, n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
**kwargs,
):
is_pad_mask = kwargs.get("is_pad_mask", False)
q = self.query(x)
if kv_cache is None or xa is None or self.key not in kv_cache:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = self.key(x if xa is None else xa)
v = self.value(x if xa is None else xa)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache[self.key]
v = kv_cache[self.value]
wv, qk = self.qkv_attention(q, k, v, mask, is_pad_mask=is_pad_mask)
return self.out(wv), qk
def qkv_attention(
self,
q: Tensor,
k: Tensor,
v: Tensor,
mask: Optional[Tensor] = None,
**kwargs,
):
is_pad_mask = kwargs.get("is_pad_mask", False)
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
qk = q @ k
if mask is not None:
if not is_pad_mask:
qk = qk + mask[:n_ctx, :n_ctx]
else:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
qk = qk.masked_fill(mask, min_value)
qk = qk.float()
w = F.softmax(qk, dim=-1).to(q.dtype)
if mask is not None and is_pad_mask:
w = w.masked_fill(mask, 0.0)
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
from omegaconf import OmegaConf
class ResidualAttentionBlockRWKV(nn.Module):
def __init__(
self, n_state: int, n_head: int, cross_attention: bool = False, layer_id=0, **kwargs
):
super().__init__()
rwkv_cfg = kwargs.get("rwkv_cfg", {})
args = OmegaConf.create(rwkv_cfg)
if args.get("version", "v4") == "v4":
from funasr.models.sense_voice.rwkv_v4 import RWKVLayer
from funasr.models.sense_voice.rwkv_v4 import RWKV_TimeMix as RWKV_Tmix
elif args.get("version", "v5") == "v5":
from funasr.models.sense_voice.rwkv_v5 import RWKVLayer
from funasr.models.sense_voice.rwkv_v5 import RWKV_Tmix_x052 as RWKV_Tmix
else:
from funasr.models.sense_voice.rwkv_v6 import RWKVLayer
from funasr.models.sense_voice.rwkv_v6 import RWKV_Tmix_x060 as RWKV_Tmix
# self.att = RWKVLayer(args=args, layer_id=layer_id)
self.att = RWKV_Tmix(args, layer_id=layer_id)
if args.get("init_rwkv", True):
print("init_rwkv")
nn.init.orthogonal_(self.att.receptance.weight, gain=1)
nn.init.orthogonal_(self.att.key.weight, gain=0.1)
nn.init.orthogonal_(self.att.value.weight, gain=1)
nn.init.orthogonal_(self.att.gate.weight, gain=0.1)
nn.init.zeros_(self.att.output.weight)
self.ln0 = None
if layer_id == 0 and not args.get("ln0", True):
self.ln0 = LayerNorm(args.n_embd)
if args.get("init_rwkv", True):
print("init_rwkv")
layer_id = 0
scale = ((1 + layer_id) / args.get("n_layer")) ** 0.7
nn.init.constant_(self.ln0.weight, scale)
self.layer_id = layer_id
self.args = args
self.ln1 = None
if not args.get("ln1", True):
self.ln1 = LayerNorm(args.n_embd)
# init
if args.get("init_rwkv", True):
print("init_rwkv")
scale = ((1 + layer_id) / args.get("n_layer")) ** 0.7
nn.init.constant_(self.ln1.weight, scale)
if args.get("datatype", "bf16") == "bf16":
self.att.to(torch.bfloat16)
# if self.ln1 is not None:
# self.ln1.to(torch.bfloat16)
self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * 4
self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
**kwargs,
):
is_pad_mask = kwargs.get("is_pad_mask", False)
is_pad_memory_mask = kwargs.get("is_pad_memory_mask", False)
if self.layer_id == 0 and self.ln0 is not None:
x = self.ln0(x)
if self.args.get("datatype", "bf16") == "bf16":
x = x.bfloat16()
if self.ln1 is None:
x = x + self.att(x, mask=mask, kv_cache=kv_cache, is_pad_mask=is_pad_mask)[0]
else:
x = x + self.att(self.ln1(x), mask=mask, kv_cache=kv_cache, is_pad_mask=is_pad_mask)[0]
if self.args.get("datatype", "bf16") == "bf16":
x = x.to(torch.float32)
if self.cross_attn:
x = (
x
+ self.cross_attn(
self.cross_attn_ln(x), xa, kv_cache=kv_cache, is_pad_mask=is_pad_memory_mask
)[0]
)
x = x + self.mlp(self.mlp_ln(x))
return x
@tables.register("decoder_classes", "SenseVoiceDecoder")
class SenseVoiceDecoder(nn.Module):
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, **kwargs):
super().__init__()
self.token_embedding = nn.Embedding(n_vocab, n_state)
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
self.blocks = nn.ModuleList(
[
ResidualAttentionBlockRWKV(
n_state, n_head, cross_attention=True, layer_id=i, **kwargs
)
for i in range(n_layer)
]
)
self.ln = LayerNorm(n_state)
mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
self.use_padmask = kwargs.get("use_padmask", True)
def forward(
self,
x: torch.Tensor,
xa: torch.Tensor,
kv_cache: Optional[dict] = None,
**kwargs,
):
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
# import pdb;pdb.set_trace()
use_padmask = self.use_padmask
hlens = kwargs.get("hlens", None)
ys_in_lens = kwargs.get("ys_in_lens", None)
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
tgt, memory = x, xa
tgt[tgt == -1] = 0
tgt = self.token_embedding(tgt) + self.positional_embedding[offset : offset + tgt.size(1)]
# tgt = self.dropout(tgt)
x = tgt.to(memory.dtype)
if use_padmask and hlens is not None:
memory_mask = (~make_pad_mask(hlens)[:, None, :]).to(memory.device)
else:
memory_mask = None
for layer, block in enumerate(self.blocks):
x = block(
x,
memory,
mask=self.mask,
memory_mask=memory_mask,
is_pad_mask=False,
is_pad_memory_mask=True,
)
x = self.ln(x)
x = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
return x
def init_state(self, x):
state = {}
return state
def final_score(self, state) -> float:
"""Score eos (optional).
Args:
state: Scorer state for prefix tokens
Returns:
float: final score
"""
return 0.0
def score(self, ys, state, x):
"""Score."""
ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0)
logp = self.forward(ys.unsqueeze(0), x.unsqueeze(0), cache=state)
return logp.squeeze(0)[-1, :], state
class MultiHeadedAttentionSANMDecoder(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_feat, dropout_rate, kernel_size, sanm_shfit=0):
"""Construct an MultiHeadedAttention object."""
super().__init__()
self.dropout = nn.Dropout(p=dropout_rate)
self.fsmn_block = nn.Conv1d(
n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False
)
# padding
# padding
left_padding = (kernel_size - 1) // 2
if sanm_shfit > 0:
left_padding = left_padding + sanm_shfit
right_padding = kernel_size - 1 - left_padding
self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0)
self.kernel_size = kernel_size
def forward(self, inputs, mask, cache=None, mask_shfit_chunk=None, **kwargs):
"""
:param x: (#batch, time1, size).
:param mask: Mask tensor (#batch, 1, time)
:return:
"""
# print("in fsmn, inputs", inputs.size())
b, t, d = inputs.size()
# logging.info(
# "mask: {}".format(mask.size()))
if mask is not None:
mask = torch.reshape(mask, (b, -1, 1))
# logging.info("in fsmn, mask: {}, {}".format(mask.size(), mask[0:100:50, :, :]))
if mask_shfit_chunk is not None:
# logging.info("in fsmn, mask_fsmn: {}, {}".format(mask_shfit_chunk.size(), mask_shfit_chunk[0:100:50, :, :]))
mask = mask * mask_shfit_chunk
# logging.info("in fsmn, mask_after_fsmn: {}, {}".format(mask.size(), mask[0:100:50, :, :]))
# print("in fsmn, mask", mask.size())
# print("in fsmn, inputs", inputs.size())
inputs = inputs * mask
x = inputs.transpose(1, 2)
b, d, t = x.size()
if cache is None:
# print("in fsmn, cache is None, x", x.size())
x = self.pad_fn(x)
if not self.training:
cache = x
else:
# print("in fsmn, cache is not None, x", x.size())
# x = torch.cat((x, cache), dim=2)[:, :, :-1]
# if t < self.kernel_size:
# x = self.pad_fn(x)
x = torch.cat((cache[:, :, 1:], x), dim=2)
x = x[:, :, -(self.kernel_size + t - 1) :]
# print("in fsmn, cache is not None, x_cat", x.size())
cache = x
x = self.fsmn_block(x)
x = x.transpose(1, 2)
# print("in fsmn, fsmn_out", x.size())
if x.size(1) != inputs.size(1):
inputs = inputs[:, -1, :]
x = x + inputs
x = self.dropout(x)
if mask is not None:
x = x * mask
return x, cache
class ResidualAttentionBlockFSMN(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False, **kwargs):
super().__init__()
self.attn = MultiHeadedAttentionSANMDecoder(
n_state,
kwargs.get("self_attention_dropout_rate"),
kwargs.get("kernel_size", 20),
kwargs.get("sanm_shfit", 10),
)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * 4
self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
**kwargs,
):
cache = kwargs.get("cache", {})
layer = kwargs.get("layer", 0)
is_pad_mask = kwargs.get("is_pad_mask", False)
is_pad_memory_mask = kwargs.get("is_pad_memory_mask", False)
fsmn_cache = cache[layer]["fsmn_cache"] if cache is not None and len(cache) > 0 else None
# if fsmn_cache is not None:
# x = x[:, -1:]
att_res, fsmn_cache = self.attn(self.attn_ln(x), mask=None, cache=fsmn_cache)
# if len(cache)>1:
# cache[layer]["fsmn_cache"] = fsmn_cache
# x = x[:, -1:]
x = x + att_res
if self.cross_attn:
x = (
x
+ self.cross_attn(
self.cross_attn_ln(x), xa, kv_cache=kv_cache, is_pad_mask=is_pad_memory_mask
)[0]
)
x = x + self.mlp(self.mlp_ln(x))
return x
@tables.register("decoder_classes", "SenseVoiceDecoderFSMN")
class SenseVoiceDecoderFSMN(nn.Module):
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, **kwargs):
super().__init__()
self.token_embedding = nn.Embedding(n_vocab, n_state)
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
self.blocks = nn.ModuleList(
[
ResidualAttentionBlockFSMN(
n_state, n_head, cross_attention=True, layer_id=i, **kwargs
)
for i in range(n_layer)
]
)
self.ln = LayerNorm(n_state)
mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
self.use_padmask = kwargs.get("use_padmask", True)
def forward(
self,
x: torch.Tensor,
xa: torch.Tensor,
kv_cache: Optional[dict] = None,
**kwargs,
):
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
# import pdb;pdb.set_trace()
use_padmask = self.use_padmask
hlens = kwargs.get("hlens", None)
ys_in_lens = kwargs.get("ys_in_lens", None)
tgt, memory = x, xa
tgt[tgt == -1] = 0
tgt = self.token_embedding(tgt) + self.positional_embedding[: tgt.size(1)]
# tgt = self.dropout(tgt)
x = tgt.to(memory.dtype)
if use_padmask and hlens is not None:
memory_mask = (~make_pad_mask(hlens)[:, None, :]).to(memory.device)
else:
memory_mask = None
for layer, block in enumerate(self.blocks):
x = block(
x,
memory,
mask=self.mask,
memory_mask=memory_mask,
is_pad_mask=False,
is_pad_memory_mask=True,
cache=kwargs.get("cache", None),
layer=layer,
)
x = self.ln(x)
x = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
return x
def init_state(self, x):
state = {}
for layer, block in enumerate(self.blocks):
state[layer] = {
"fsmn_cache": None,
"memory_key": None,
"memory_value": None,
}
return state
def final_score(self, state) -> float:
"""Score eos (optional).
Args:
state: Scorer state for prefix tokens
Returns:
float: final score
"""
return 0.0
def score(self, ys, state, x):
"""Score."""
ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0)
logp = self.forward(ys.unsqueeze(0), x.unsqueeze(0), cache=None)
logp = torch.log_softmax(logp, dim=-1)
return logp.squeeze(0)[-1, :], state