116 lines
2.4 KiB
YAML
116 lines
2.4 KiB
YAML
|
# This is an example that demonstrates how to configure a model file.
|
||
|
# You can modify the configuration according to your own requirements.
|
||
|
|
||
|
# to print the register_table:
|
||
|
# from funasr.register import tables
|
||
|
# tables.print()
|
||
|
|
||
|
# network architecture
|
||
|
model: MonotonicAligner
|
||
|
model_conf:
|
||
|
length_normalized_loss: False
|
||
|
predictor_bias: 1
|
||
|
|
||
|
# encoder
|
||
|
encoder: SANMEncoder
|
||
|
encoder_conf:
|
||
|
output_size: 320
|
||
|
attention_heads: 4
|
||
|
linear_units: 1280
|
||
|
num_blocks: 30
|
||
|
dropout_rate: 0.1
|
||
|
positional_dropout_rate: 0.1
|
||
|
attention_dropout_rate: 0.1
|
||
|
input_layer: pe
|
||
|
pos_enc_class: SinusoidalPositionEncoder
|
||
|
normalize_before: true
|
||
|
kernel_size: 11
|
||
|
sanm_shfit: 0
|
||
|
selfattention_layer_type: sanm
|
||
|
|
||
|
predictor: CifPredictorV3
|
||
|
predictor_conf:
|
||
|
idim: 320
|
||
|
threshold: 1.0
|
||
|
l_order: 1
|
||
|
r_order: 1
|
||
|
tail_threshold: 0.45
|
||
|
smooth_factor2: 0.25
|
||
|
noise_threshold2: 0.01
|
||
|
upsample_times: 3
|
||
|
use_cif1_cnn: false
|
||
|
upsample_type: cnn_blstm
|
||
|
|
||
|
# frontend related
|
||
|
frontend: WavFrontend
|
||
|
frontend_conf:
|
||
|
fs: 16000
|
||
|
window: hamming
|
||
|
n_mels: 80
|
||
|
frame_length: 25
|
||
|
frame_shift: 10
|
||
|
lfr_m: 7
|
||
|
lfr_n: 6
|
||
|
|
||
|
specaug: SpecAugLFR
|
||
|
specaug_conf:
|
||
|
apply_time_warp: false
|
||
|
time_warp_window: 5
|
||
|
time_warp_mode: bicubic
|
||
|
apply_freq_mask: true
|
||
|
freq_mask_width_range:
|
||
|
- 0
|
||
|
- 30
|
||
|
lfr_rate: 6
|
||
|
num_freq_mask: 1
|
||
|
apply_time_mask: true
|
||
|
time_mask_width_range:
|
||
|
- 0
|
||
|
- 12
|
||
|
num_time_mask: 1
|
||
|
|
||
|
train_conf:
|
||
|
accum_grad: 1
|
||
|
grad_clip: 5
|
||
|
max_epoch: 150
|
||
|
val_scheduler_criterion:
|
||
|
- valid
|
||
|
- acc
|
||
|
best_model_criterion:
|
||
|
- - valid
|
||
|
- acc
|
||
|
- max
|
||
|
keep_nbest_models: 10
|
||
|
log_interval: 50
|
||
|
|
||
|
optim: adam
|
||
|
optim_conf:
|
||
|
lr: 0.0005
|
||
|
scheduler: warmuplr
|
||
|
scheduler_conf:
|
||
|
warmup_steps: 30000
|
||
|
|
||
|
dataset: AudioDataset
|
||
|
dataset_conf:
|
||
|
index_ds: IndexDSJsonl
|
||
|
batch_sampler: BatchSampler
|
||
|
batch_type: example # example or length
|
||
|
batch_size: 1 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len;
|
||
|
max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length,
|
||
|
buffer_size: 500
|
||
|
shuffle: True
|
||
|
num_workers: 0
|
||
|
|
||
|
tokenizer: CharTokenizer
|
||
|
tokenizer_conf:
|
||
|
unk_symbol: <unk>
|
||
|
split_with_space: true
|
||
|
|
||
|
ctc_conf:
|
||
|
dropout_rate: 0.0
|
||
|
ctc_type: builtin
|
||
|
reduce: true
|
||
|
ignore_nan_grad: true
|
||
|
|
||
|
normalize: null
|