431 lines
17 KiB
Python
431 lines
17 KiB
Python
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
|
||
|
import logging
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
|
||
|
from funasr.models.encoder.encoder_layer_mfcca import EncoderLayer
|
||
|
from funasr.models.transformer.utils.nets_utils import get_activation
|
||
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||
|
from funasr.models.transformer.attention import (
|
||
|
MultiHeadedAttention, # noqa: H301
|
||
|
RelPositionMultiHeadedAttention, # noqa: H301
|
||
|
LegacyRelPositionMultiHeadedAttention, # noqa: H301
|
||
|
)
|
||
|
from funasr.models.transformer.embedding import (
|
||
|
PositionalEncoding, # noqa: H301
|
||
|
ScaledPositionalEncoding, # noqa: H301
|
||
|
RelPositionalEncoding, # noqa: H301
|
||
|
LegacyRelPositionalEncoding, # noqa: H301
|
||
|
)
|
||
|
from funasr.models.transformer.layer_norm import LayerNorm
|
||
|
from funasr.models.transformer.utils.multi_layer_conv import Conv1dLinear
|
||
|
from funasr.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
|
||
|
from funasr.models.transformer.positionwise_feed_forward import (
|
||
|
PositionwiseFeedForward, # noqa: H301
|
||
|
)
|
||
|
from funasr.models.transformer.utils.repeat import repeat
|
||
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling
|
||
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling2
|
||
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling6
|
||
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling8
|
||
|
from funasr.models.transformer.utils.subsampling import TooShortUttError
|
||
|
from funasr.models.transformer.utils.subsampling import check_short_utt
|
||
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
||
|
import pdb
|
||
|
import math
|
||
|
|
||
|
|
||
|
class ConvolutionModule(nn.Module):
|
||
|
"""ConvolutionModule in Conformer model.
|
||
|
Args:
|
||
|
channels (int): The number of channels of conv layers.
|
||
|
kernel_size (int): Kernerl size of conv layers.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
|
||
|
"""Construct an ConvolutionModule object."""
|
||
|
super(ConvolutionModule, self).__init__()
|
||
|
# kernerl_size should be a odd number for 'SAME' padding
|
||
|
assert (kernel_size - 1) % 2 == 0
|
||
|
|
||
|
self.pointwise_conv1 = nn.Conv1d(
|
||
|
channels,
|
||
|
2 * channels,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
bias=bias,
|
||
|
)
|
||
|
self.depthwise_conv = nn.Conv1d(
|
||
|
channels,
|
||
|
channels,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
padding=(kernel_size - 1) // 2,
|
||
|
groups=channels,
|
||
|
bias=bias,
|
||
|
)
|
||
|
self.norm = nn.BatchNorm1d(channels)
|
||
|
self.pointwise_conv2 = nn.Conv1d(
|
||
|
channels,
|
||
|
channels,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
bias=bias,
|
||
|
)
|
||
|
self.activation = activation
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Compute convolution module.
|
||
|
Args:
|
||
|
x (torch.Tensor): Input tensor (#batch, time, channels).
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, time, channels).
|
||
|
"""
|
||
|
# exchange the temporal dimension and the feature dimension
|
||
|
x = x.transpose(1, 2)
|
||
|
|
||
|
# GLU mechanism
|
||
|
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
||
|
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
||
|
|
||
|
# 1D Depthwise Conv
|
||
|
x = self.depthwise_conv(x)
|
||
|
x = self.activation(self.norm(x))
|
||
|
|
||
|
x = self.pointwise_conv2(x)
|
||
|
|
||
|
return x.transpose(1, 2)
|
||
|
|
||
|
|
||
|
class MFCCAEncoder(AbsEncoder):
|
||
|
"""Conformer encoder module.
|
||
|
Args:
|
||
|
input_size (int): Input dimension.
|
||
|
output_size (int): Dimention of attention.
|
||
|
attention_heads (int): The number of heads of multi head attention.
|
||
|
linear_units (int): The number of units of position-wise feed forward.
|
||
|
num_blocks (int): The number of decoder blocks.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
attention_dropout_rate (float): Dropout rate in attention.
|
||
|
positional_dropout_rate (float): Dropout rate after adding positional encoding.
|
||
|
input_layer (Union[str, torch.nn.Module]): Input layer type.
|
||
|
normalize_before (bool): Whether to use layer_norm before the first block.
|
||
|
concat_after (bool): Whether to concat attention layer's input and output.
|
||
|
If True, additional linear will be applied.
|
||
|
i.e. x -> x + linear(concat(x, att(x)))
|
||
|
If False, no additional linear will be applied. i.e. x -> x + att(x)
|
||
|
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
|
||
|
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
|
||
|
rel_pos_type (str): Whether to use the latest relative positional encoding or
|
||
|
the legacy one. The legacy relative positional encoding will be deprecated
|
||
|
in the future. More Details can be found in
|
||
|
https://github.com/espnet/espnet/pull/2816.
|
||
|
encoder_pos_enc_layer_type (str): Encoder positional encoding layer type.
|
||
|
encoder_attn_layer_type (str): Encoder attention layer type.
|
||
|
activation_type (str): Encoder activation function type.
|
||
|
macaron_style (bool): Whether to use macaron style for positionwise layer.
|
||
|
use_cnn_module (bool): Whether to use convolution module.
|
||
|
zero_triu (bool): Whether to zero the upper triangular part of attention matrix.
|
||
|
cnn_module_kernel (int): Kernerl size of convolution module.
|
||
|
padding_idx (int): Padding idx for input_layer=embed.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
input_size: int,
|
||
|
output_size: int = 256,
|
||
|
attention_heads: int = 4,
|
||
|
linear_units: int = 2048,
|
||
|
num_blocks: int = 6,
|
||
|
dropout_rate: float = 0.1,
|
||
|
positional_dropout_rate: float = 0.1,
|
||
|
attention_dropout_rate: float = 0.0,
|
||
|
input_layer: str = "conv2d",
|
||
|
normalize_before: bool = True,
|
||
|
concat_after: bool = False,
|
||
|
positionwise_layer_type: str = "linear",
|
||
|
positionwise_conv_kernel_size: int = 3,
|
||
|
macaron_style: bool = False,
|
||
|
rel_pos_type: str = "legacy",
|
||
|
pos_enc_layer_type: str = "rel_pos",
|
||
|
selfattention_layer_type: str = "rel_selfattn",
|
||
|
activation_type: str = "swish",
|
||
|
use_cnn_module: bool = True,
|
||
|
zero_triu: bool = False,
|
||
|
cnn_module_kernel: int = 31,
|
||
|
padding_idx: int = -1,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self._output_size = output_size
|
||
|
|
||
|
if rel_pos_type == "legacy":
|
||
|
if pos_enc_layer_type == "rel_pos":
|
||
|
pos_enc_layer_type = "legacy_rel_pos"
|
||
|
if selfattention_layer_type == "rel_selfattn":
|
||
|
selfattention_layer_type = "legacy_rel_selfattn"
|
||
|
elif rel_pos_type == "latest":
|
||
|
assert selfattention_layer_type != "legacy_rel_selfattn"
|
||
|
assert pos_enc_layer_type != "legacy_rel_pos"
|
||
|
else:
|
||
|
raise ValueError("unknown rel_pos_type: " + rel_pos_type)
|
||
|
|
||
|
activation = get_activation(activation_type)
|
||
|
if pos_enc_layer_type == "abs_pos":
|
||
|
pos_enc_class = PositionalEncoding
|
||
|
elif pos_enc_layer_type == "scaled_abs_pos":
|
||
|
pos_enc_class = ScaledPositionalEncoding
|
||
|
elif pos_enc_layer_type == "rel_pos":
|
||
|
assert selfattention_layer_type == "rel_selfattn"
|
||
|
pos_enc_class = RelPositionalEncoding
|
||
|
elif pos_enc_layer_type == "legacy_rel_pos":
|
||
|
assert selfattention_layer_type == "legacy_rel_selfattn"
|
||
|
pos_enc_class = LegacyRelPositionalEncoding
|
||
|
logging.warning("Using legacy_rel_pos and it will be deprecated in the future.")
|
||
|
else:
|
||
|
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
|
||
|
|
||
|
if input_layer == "linear":
|
||
|
self.embed = torch.nn.Sequential(
|
||
|
torch.nn.Linear(input_size, output_size),
|
||
|
torch.nn.LayerNorm(output_size),
|
||
|
torch.nn.Dropout(dropout_rate),
|
||
|
pos_enc_class(output_size, positional_dropout_rate),
|
||
|
)
|
||
|
elif input_layer == "conv2d":
|
||
|
self.embed = Conv2dSubsampling(
|
||
|
input_size,
|
||
|
output_size,
|
||
|
dropout_rate,
|
||
|
pos_enc_class(output_size, positional_dropout_rate),
|
||
|
)
|
||
|
elif input_layer == "conv2d6":
|
||
|
self.embed = Conv2dSubsampling6(
|
||
|
input_size,
|
||
|
output_size,
|
||
|
dropout_rate,
|
||
|
pos_enc_class(output_size, positional_dropout_rate),
|
||
|
)
|
||
|
elif input_layer == "conv2d8":
|
||
|
self.embed = Conv2dSubsampling8(
|
||
|
input_size,
|
||
|
output_size,
|
||
|
dropout_rate,
|
||
|
pos_enc_class(output_size, positional_dropout_rate),
|
||
|
)
|
||
|
elif input_layer == "embed":
|
||
|
self.embed = torch.nn.Sequential(
|
||
|
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
|
||
|
pos_enc_class(output_size, positional_dropout_rate),
|
||
|
)
|
||
|
elif isinstance(input_layer, torch.nn.Module):
|
||
|
self.embed = torch.nn.Sequential(
|
||
|
input_layer,
|
||
|
pos_enc_class(output_size, positional_dropout_rate),
|
||
|
)
|
||
|
elif input_layer is None:
|
||
|
self.embed = torch.nn.Sequential(pos_enc_class(output_size, positional_dropout_rate))
|
||
|
else:
|
||
|
raise ValueError("unknown input_layer: " + input_layer)
|
||
|
self.normalize_before = normalize_before
|
||
|
if positionwise_layer_type == "linear":
|
||
|
positionwise_layer = PositionwiseFeedForward
|
||
|
positionwise_layer_args = (
|
||
|
output_size,
|
||
|
linear_units,
|
||
|
dropout_rate,
|
||
|
activation,
|
||
|
)
|
||
|
elif positionwise_layer_type == "conv1d":
|
||
|
positionwise_layer = MultiLayeredConv1d
|
||
|
positionwise_layer_args = (
|
||
|
output_size,
|
||
|
linear_units,
|
||
|
positionwise_conv_kernel_size,
|
||
|
dropout_rate,
|
||
|
)
|
||
|
elif positionwise_layer_type == "conv1d-linear":
|
||
|
positionwise_layer = Conv1dLinear
|
||
|
positionwise_layer_args = (
|
||
|
output_size,
|
||
|
linear_units,
|
||
|
positionwise_conv_kernel_size,
|
||
|
dropout_rate,
|
||
|
)
|
||
|
else:
|
||
|
raise NotImplementedError("Support only linear or conv1d.")
|
||
|
|
||
|
if selfattention_layer_type == "selfattn":
|
||
|
encoder_selfattn_layer = MultiHeadedAttention
|
||
|
encoder_selfattn_layer_args = (
|
||
|
attention_heads,
|
||
|
output_size,
|
||
|
attention_dropout_rate,
|
||
|
)
|
||
|
elif selfattention_layer_type == "legacy_rel_selfattn":
|
||
|
assert pos_enc_layer_type == "legacy_rel_pos"
|
||
|
encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention
|
||
|
encoder_selfattn_layer_args = (
|
||
|
attention_heads,
|
||
|
output_size,
|
||
|
attention_dropout_rate,
|
||
|
)
|
||
|
logging.warning("Using legacy_rel_selfattn and it will be deprecated in the future.")
|
||
|
elif selfattention_layer_type == "rel_selfattn":
|
||
|
assert pos_enc_layer_type == "rel_pos"
|
||
|
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
||
|
encoder_selfattn_layer_args = (
|
||
|
attention_heads,
|
||
|
output_size,
|
||
|
attention_dropout_rate,
|
||
|
zero_triu,
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type)
|
||
|
|
||
|
convolution_layer = ConvolutionModule
|
||
|
convolution_layer_args = (output_size, cnn_module_kernel, activation)
|
||
|
encoder_selfattn_layer_raw = MultiHeadedAttention
|
||
|
encoder_selfattn_layer_args_raw = (
|
||
|
attention_heads,
|
||
|
output_size,
|
||
|
attention_dropout_rate,
|
||
|
)
|
||
|
self.encoders = repeat(
|
||
|
num_blocks,
|
||
|
lambda lnum: EncoderLayer(
|
||
|
output_size,
|
||
|
encoder_selfattn_layer_raw(*encoder_selfattn_layer_args_raw),
|
||
|
encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
||
|
positionwise_layer(*positionwise_layer_args),
|
||
|
positionwise_layer(*positionwise_layer_args) if macaron_style else None,
|
||
|
convolution_layer(*convolution_layer_args) if use_cnn_module else None,
|
||
|
dropout_rate,
|
||
|
normalize_before,
|
||
|
concat_after,
|
||
|
),
|
||
|
)
|
||
|
if self.normalize_before:
|
||
|
self.after_norm = LayerNorm(output_size)
|
||
|
self.conv1 = torch.nn.Conv2d(8, 16, [5, 7], stride=[1, 1], padding=(2, 3))
|
||
|
|
||
|
self.conv2 = torch.nn.Conv2d(16, 32, [5, 7], stride=[1, 1], padding=(2, 3))
|
||
|
|
||
|
self.conv3 = torch.nn.Conv2d(32, 16, [5, 7], stride=[1, 1], padding=(2, 3))
|
||
|
|
||
|
self.conv4 = torch.nn.Conv2d(16, 1, [5, 7], stride=[1, 1], padding=(2, 3))
|
||
|
|
||
|
def output_size(self) -> int:
|
||
|
return self._output_size
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
xs_pad: torch.Tensor,
|
||
|
ilens: torch.Tensor,
|
||
|
channel_size: torch.Tensor,
|
||
|
prev_states: torch.Tensor = None,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||
|
"""Calculate forward propagation.
|
||
|
Args:
|
||
|
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
|
||
|
ilens (torch.Tensor): Input length (#batch).
|
||
|
prev_states (torch.Tensor): Not to be used now.
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, L, output_size).
|
||
|
torch.Tensor: Output length (#batch).
|
||
|
torch.Tensor: Not to be used now.
|
||
|
"""
|
||
|
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
||
|
if (
|
||
|
isinstance(self.embed, Conv2dSubsampling)
|
||
|
or isinstance(self.embed, Conv2dSubsampling6)
|
||
|
or isinstance(self.embed, Conv2dSubsampling8)
|
||
|
):
|
||
|
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
|
||
|
if short_status:
|
||
|
raise TooShortUttError(
|
||
|
f"has {xs_pad.size(1)} frames and is too short for subsampling "
|
||
|
+ f"(it needs more than {limit_size} frames), return empty results",
|
||
|
xs_pad.size(1),
|
||
|
limit_size,
|
||
|
)
|
||
|
xs_pad, masks = self.embed(xs_pad, masks)
|
||
|
else:
|
||
|
xs_pad = self.embed(xs_pad)
|
||
|
xs_pad, masks, channel_size = self.encoders(xs_pad, masks, channel_size)
|
||
|
if isinstance(xs_pad, tuple):
|
||
|
xs_pad = xs_pad[0]
|
||
|
|
||
|
t_leng = xs_pad.size(1)
|
||
|
d_dim = xs_pad.size(2)
|
||
|
xs_pad = xs_pad.reshape(-1, channel_size, t_leng, d_dim)
|
||
|
# pdb.set_trace()
|
||
|
if channel_size < 8:
|
||
|
repeat_num = math.ceil(8 / channel_size)
|
||
|
xs_pad = xs_pad.repeat(1, repeat_num, 1, 1)[:, 0:8, :, :]
|
||
|
xs_pad = self.conv1(xs_pad)
|
||
|
xs_pad = self.conv2(xs_pad)
|
||
|
xs_pad = self.conv3(xs_pad)
|
||
|
xs_pad = self.conv4(xs_pad)
|
||
|
xs_pad = xs_pad.squeeze().reshape(-1, t_leng, d_dim)
|
||
|
mask_tmp = masks.size(1)
|
||
|
masks = masks.reshape(-1, channel_size, mask_tmp, t_leng)[:, 0, :, :]
|
||
|
|
||
|
if self.normalize_before:
|
||
|
xs_pad = self.after_norm(xs_pad)
|
||
|
|
||
|
olens = masks.squeeze(1).sum(1)
|
||
|
return xs_pad, olens, None
|
||
|
|
||
|
def forward_hidden(
|
||
|
self,
|
||
|
xs_pad: torch.Tensor,
|
||
|
ilens: torch.Tensor,
|
||
|
prev_states: torch.Tensor = None,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||
|
"""Calculate forward propagation.
|
||
|
Args:
|
||
|
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
|
||
|
ilens (torch.Tensor): Input length (#batch).
|
||
|
prev_states (torch.Tensor): Not to be used now.
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, L, output_size).
|
||
|
torch.Tensor: Output length (#batch).
|
||
|
torch.Tensor: Not to be used now.
|
||
|
"""
|
||
|
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
||
|
if (
|
||
|
isinstance(self.embed, Conv2dSubsampling)
|
||
|
or isinstance(self.embed, Conv2dSubsampling6)
|
||
|
or isinstance(self.embed, Conv2dSubsampling8)
|
||
|
):
|
||
|
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
|
||
|
if short_status:
|
||
|
raise TooShortUttError(
|
||
|
f"has {xs_pad.size(1)} frames and is too short for subsampling "
|
||
|
+ f"(it needs more than {limit_size} frames), return empty results",
|
||
|
xs_pad.size(1),
|
||
|
limit_size,
|
||
|
)
|
||
|
xs_pad, masks = self.embed(xs_pad, masks)
|
||
|
else:
|
||
|
xs_pad = self.embed(xs_pad)
|
||
|
num_layer = len(self.encoders)
|
||
|
for idx, encoder in enumerate(self.encoders):
|
||
|
xs_pad, masks = encoder(xs_pad, masks)
|
||
|
if idx == num_layer // 2 - 1:
|
||
|
hidden_feature = xs_pad
|
||
|
if isinstance(xs_pad, tuple):
|
||
|
xs_pad = xs_pad[0]
|
||
|
hidden_feature = hidden_feature[0]
|
||
|
if self.normalize_before:
|
||
|
xs_pad = self.after_norm(xs_pad)
|
||
|
self.hidden_feature = self.after_norm(hidden_feature)
|
||
|
|
||
|
olens = masks.squeeze(1).sum(1)
|
||
|
return xs_pad, olens, None
|