112 lines
4.0 KiB
Python
112 lines
4.0 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
# Copyright 2024 yufan
|
||
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||
|
|
||
|
"""Multi-Head Attention Return Weight layer definition."""
|
||
|
|
||
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
|
||
|
class MultiHeadedAttentionReturnWeight(nn.Module):
|
||
|
"""Multi-Head Attention layer.
|
||
|
|
||
|
Args:
|
||
|
n_head (int): The number of heads.
|
||
|
n_feat (int): The number of features.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, n_head, n_feat, dropout_rate):
|
||
|
"""Construct an MultiHeadedAttentionReturnWeight object."""
|
||
|
super(MultiHeadedAttentionReturnWeight, self).__init__()
|
||
|
assert n_feat % n_head == 0
|
||
|
# We assume d_v always equals d_k
|
||
|
self.d_k = n_feat // n_head
|
||
|
self.h = n_head
|
||
|
self.linear_q = nn.Linear(n_feat, n_feat)
|
||
|
self.linear_k = nn.Linear(n_feat, n_feat)
|
||
|
self.linear_v = nn.Linear(n_feat, n_feat)
|
||
|
self.linear_out = nn.Linear(n_feat, n_feat)
|
||
|
self.attn = None
|
||
|
self.dropout = nn.Dropout(p=dropout_rate)
|
||
|
|
||
|
def forward_qkv(self, query, key, value):
|
||
|
"""Transform query, key and value.
|
||
|
|
||
|
Args:
|
||
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k).
|
||
|
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k).
|
||
|
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k).
|
||
|
|
||
|
"""
|
||
|
n_batch = query.size(0)
|
||
|
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
||
|
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
||
|
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
||
|
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
||
|
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
||
|
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
||
|
|
||
|
return q, k, v
|
||
|
|
||
|
def forward_attention(self, value, scores, mask):
|
||
|
"""Compute attention context vector.
|
||
|
|
||
|
Args:
|
||
|
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k).
|
||
|
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2).
|
||
|
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Transformed value (#batch, time1, d_model)
|
||
|
weighted by the attention score (#batch, time1, time2).
|
||
|
|
||
|
"""
|
||
|
n_batch = value.size(0)
|
||
|
if mask is not None:
|
||
|
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||
|
min_value = torch.finfo(scores.dtype).min
|
||
|
scores = scores.masked_fill(mask, min_value)
|
||
|
self.attn = torch.softmax(scores, dim=-1).masked_fill(
|
||
|
mask, 0.0
|
||
|
) # (batch, head, time1, time2)
|
||
|
else:
|
||
|
self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
||
|
|
||
|
p_attn = self.dropout(self.attn)
|
||
|
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
||
|
x = (
|
||
|
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
|
||
|
) # (batch, time1, d_model)
|
||
|
|
||
|
return self.linear_out(x), self.attn # (batch, time1, d_model)
|
||
|
|
||
|
def forward(self, query, key, value, mask):
|
||
|
"""Compute scaled dot product attention.
|
||
|
|
||
|
Args:
|
||
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||
|
(#batch, time1, time2).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||
|
|
||
|
"""
|
||
|
q, k, v = self.forward_qkv(query, key, value)
|
||
|
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
||
|
return self.forward_attention(v, scores, mask)
|