460 lines
18 KiB
Python
460 lines
18 KiB
Python
|
# Copyright 2019 Shigeki Karita
|
||
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||
|
|
||
|
"""Transformer encoder definition."""
|
||
|
|
||
|
from typing import List
|
||
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
import logging
|
||
|
|
||
|
from funasr.models.transformer.attention import MultiHeadedAttention
|
||
|
from funasr.models.transformer.embedding import PositionalEncoding
|
||
|
from funasr.models.transformer.layer_norm import LayerNorm
|
||
|
from funasr.models.transformer.utils.multi_layer_conv import Conv1dLinear
|
||
|
from funasr.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
|
||
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||
|
from funasr.models.transformer.positionwise_feed_forward import (
|
||
|
PositionwiseFeedForward, # noqa: H301
|
||
|
)
|
||
|
from funasr.models.transformer.utils.repeat import repeat
|
||
|
from funasr.models.transformer.utils.dynamic_conv import DynamicConvolution
|
||
|
from funasr.models.transformer.utils.dynamic_conv2d import DynamicConvolution2D
|
||
|
from funasr.models.transformer.utils.lightconv import LightweightConvolution
|
||
|
from funasr.models.transformer.utils.lightconv2d import LightweightConvolution2D
|
||
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling
|
||
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling2
|
||
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling6
|
||
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling8
|
||
|
from funasr.models.transformer.utils.subsampling import TooShortUttError
|
||
|
from funasr.models.transformer.utils.subsampling import check_short_utt
|
||
|
|
||
|
|
||
|
class EncoderLayer(nn.Module):
|
||
|
"""Encoder layer module.
|
||
|
|
||
|
Args:
|
||
|
size (int): Input dimension.
|
||
|
self_attn (torch.nn.Module): Self-attention module instance.
|
||
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
|
||
|
can be used as the argument.
|
||
|
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||
|
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
||
|
can be used as the argument.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
normalize_before (bool): Whether to use layer_norm before the first block.
|
||
|
concat_after (bool): Whether to concat attention layer's input and output.
|
||
|
if True, additional linear will be applied.
|
||
|
i.e. x -> x + linear(concat(x, att(x)))
|
||
|
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
||
|
stochastic_depth_rate (float): Proability to skip this layer.
|
||
|
During training, the layer may skip residual computation and return input
|
||
|
as-is with given probability.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
size,
|
||
|
self_attn,
|
||
|
feed_forward,
|
||
|
dropout_rate,
|
||
|
normalize_before=True,
|
||
|
concat_after=False,
|
||
|
stochastic_depth_rate=0.0,
|
||
|
):
|
||
|
"""Construct an EncoderLayer object."""
|
||
|
super(EncoderLayer, self).__init__()
|
||
|
self.self_attn = self_attn
|
||
|
self.feed_forward = feed_forward
|
||
|
self.norm1 = LayerNorm(size)
|
||
|
self.norm2 = LayerNorm(size)
|
||
|
self.dropout = nn.Dropout(dropout_rate)
|
||
|
self.size = size
|
||
|
self.normalize_before = normalize_before
|
||
|
self.concat_after = concat_after
|
||
|
if self.concat_after:
|
||
|
self.concat_linear = nn.Linear(size + size, size)
|
||
|
self.stochastic_depth_rate = stochastic_depth_rate
|
||
|
|
||
|
def forward(self, x, mask, cache=None):
|
||
|
"""Compute encoded features.
|
||
|
|
||
|
Args:
|
||
|
x_input (torch.Tensor): Input tensor (#batch, time, size).
|
||
|
mask (torch.Tensor): Mask tensor for the input (#batch, time).
|
||
|
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, time, size).
|
||
|
torch.Tensor: Mask tensor (#batch, time).
|
||
|
|
||
|
"""
|
||
|
skip_layer = False
|
||
|
# with stochastic depth, residual connection `x + f(x)` becomes
|
||
|
# `x <- x + 1 / (1 - p) * f(x)` at training time.
|
||
|
stoch_layer_coeff = 1.0
|
||
|
if self.training and self.stochastic_depth_rate > 0:
|
||
|
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
|
||
|
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
|
||
|
|
||
|
if skip_layer:
|
||
|
if cache is not None:
|
||
|
x = torch.cat([cache, x], dim=1)
|
||
|
return x, mask
|
||
|
|
||
|
residual = x
|
||
|
if self.normalize_before:
|
||
|
x = self.norm1(x)
|
||
|
|
||
|
if cache is None:
|
||
|
x_q = x
|
||
|
else:
|
||
|
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
|
||
|
x_q = x[:, -1:, :]
|
||
|
residual = residual[:, -1:, :]
|
||
|
mask = None if mask is None else mask[:, -1:, :]
|
||
|
|
||
|
if self.concat_after:
|
||
|
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
|
||
|
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
|
||
|
else:
|
||
|
x = residual + stoch_layer_coeff * self.dropout(self.self_attn(x_q, x, x, mask))
|
||
|
if not self.normalize_before:
|
||
|
x = self.norm1(x)
|
||
|
|
||
|
residual = x
|
||
|
if self.normalize_before:
|
||
|
x = self.norm2(x)
|
||
|
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
|
||
|
if not self.normalize_before:
|
||
|
x = self.norm2(x)
|
||
|
|
||
|
if cache is not None:
|
||
|
x = torch.cat([cache, x], dim=1)
|
||
|
|
||
|
return x, mask
|
||
|
|
||
|
|
||
|
class TransformerEncoder_lm(nn.Module):
|
||
|
"""Transformer encoder module.
|
||
|
|
||
|
Args:
|
||
|
idim (int): Input dimension.
|
||
|
attention_dim (int): Dimension of attention.
|
||
|
attention_heads (int): The number of heads of multi head attention.
|
||
|
conv_wshare (int): The number of kernel of convolution. Only used in
|
||
|
selfattention_layer_type == "lightconv*" or "dynamiconv*".
|
||
|
conv_kernel_length (Union[int, str]): Kernel size str of convolution
|
||
|
(e.g. 71_71_71_71_71_71). Only used in selfattention_layer_type
|
||
|
== "lightconv*" or "dynamiconv*".
|
||
|
conv_usebias (bool): Whether to use bias in convolution. Only used in
|
||
|
selfattention_layer_type == "lightconv*" or "dynamiconv*".
|
||
|
linear_units (int): The number of units of position-wise feed forward.
|
||
|
num_blocks (int): The number of decoder blocks.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
positional_dropout_rate (float): Dropout rate after adding positional encoding.
|
||
|
attention_dropout_rate (float): Dropout rate in attention.
|
||
|
input_layer (Union[str, torch.nn.Module]): Input layer type.
|
||
|
pos_enc_class (torch.nn.Module): Positional encoding module class.
|
||
|
`PositionalEncoding `or `ScaledPositionalEncoding`
|
||
|
normalize_before (bool): Whether to use layer_norm before the first block.
|
||
|
concat_after (bool): Whether to concat attention layer's input and output.
|
||
|
if True, additional linear will be applied.
|
||
|
i.e. x -> x + linear(concat(x, att(x)))
|
||
|
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
||
|
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
|
||
|
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
|
||
|
selfattention_layer_type (str): Encoder attention layer type.
|
||
|
padding_idx (int): Padding idx for input_layer=embed.
|
||
|
stochastic_depth_rate (float): Maximum probability to skip the encoder layer.
|
||
|
intermediate_layers (Union[List[int], None]): indices of intermediate CTC layer.
|
||
|
indices start from 1.
|
||
|
if not None, intermediate outputs are returned (which changes return type
|
||
|
signature.)
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
idim,
|
||
|
attention_dim=256,
|
||
|
attention_heads=4,
|
||
|
conv_wshare=4,
|
||
|
conv_kernel_length="11",
|
||
|
conv_usebias=False,
|
||
|
linear_units=2048,
|
||
|
num_blocks=6,
|
||
|
dropout_rate=0.1,
|
||
|
positional_dropout_rate=0.1,
|
||
|
attention_dropout_rate=0.0,
|
||
|
input_layer="conv2d",
|
||
|
pos_enc_class=PositionalEncoding,
|
||
|
normalize_before=True,
|
||
|
concat_after=False,
|
||
|
positionwise_layer_type="linear",
|
||
|
positionwise_conv_kernel_size=1,
|
||
|
selfattention_layer_type="selfattn",
|
||
|
padding_idx=-1,
|
||
|
stochastic_depth_rate=0.0,
|
||
|
intermediate_layers=None,
|
||
|
ctc_softmax=None,
|
||
|
conditioning_layer_dim=None,
|
||
|
):
|
||
|
"""Construct an Encoder object."""
|
||
|
super().__init__()
|
||
|
|
||
|
self.conv_subsampling_factor = 1
|
||
|
if input_layer == "linear":
|
||
|
self.embed = torch.nn.Sequential(
|
||
|
torch.nn.Linear(idim, attention_dim),
|
||
|
torch.nn.LayerNorm(attention_dim),
|
||
|
torch.nn.Dropout(dropout_rate),
|
||
|
torch.nn.ReLU(),
|
||
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
||
|
)
|
||
|
elif input_layer == "conv2d":
|
||
|
self.embed = Conv2dSubsampling(idim, attention_dim, dropout_rate)
|
||
|
self.conv_subsampling_factor = 4
|
||
|
elif input_layer == "conv2d-scaled-pos-enc":
|
||
|
self.embed = Conv2dSubsampling(
|
||
|
idim,
|
||
|
attention_dim,
|
||
|
dropout_rate,
|
||
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
||
|
)
|
||
|
self.conv_subsampling_factor = 4
|
||
|
elif input_layer == "conv2d6":
|
||
|
self.embed = Conv2dSubsampling6(idim, attention_dim, dropout_rate)
|
||
|
self.conv_subsampling_factor = 6
|
||
|
elif input_layer == "conv2d8":
|
||
|
self.embed = Conv2dSubsampling8(idim, attention_dim, dropout_rate)
|
||
|
self.conv_subsampling_factor = 8
|
||
|
elif input_layer == "embed":
|
||
|
self.embed = torch.nn.Sequential(
|
||
|
torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx),
|
||
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
||
|
)
|
||
|
elif isinstance(input_layer, torch.nn.Module):
|
||
|
self.embed = torch.nn.Sequential(
|
||
|
input_layer,
|
||
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
||
|
)
|
||
|
elif input_layer is None:
|
||
|
self.embed = torch.nn.Sequential(pos_enc_class(attention_dim, positional_dropout_rate))
|
||
|
else:
|
||
|
raise ValueError("unknown input_layer: " + input_layer)
|
||
|
self.normalize_before = normalize_before
|
||
|
positionwise_layer, positionwise_layer_args = self.get_positionwise_layer(
|
||
|
positionwise_layer_type,
|
||
|
attention_dim,
|
||
|
linear_units,
|
||
|
dropout_rate,
|
||
|
positionwise_conv_kernel_size,
|
||
|
)
|
||
|
if selfattention_layer_type in [
|
||
|
"selfattn",
|
||
|
"rel_selfattn",
|
||
|
"legacy_rel_selfattn",
|
||
|
]:
|
||
|
logging.info("encoder self-attention layer type = self-attention")
|
||
|
encoder_selfattn_layer = MultiHeadedAttention
|
||
|
encoder_selfattn_layer_args = [
|
||
|
(
|
||
|
attention_heads,
|
||
|
attention_dim,
|
||
|
attention_dropout_rate,
|
||
|
)
|
||
|
] * num_blocks
|
||
|
elif selfattention_layer_type == "lightconv":
|
||
|
logging.info("encoder self-attention layer type = lightweight convolution")
|
||
|
encoder_selfattn_layer = LightweightConvolution
|
||
|
encoder_selfattn_layer_args = [
|
||
|
(
|
||
|
conv_wshare,
|
||
|
attention_dim,
|
||
|
attention_dropout_rate,
|
||
|
int(conv_kernel_length.split("_")[lnum]),
|
||
|
False,
|
||
|
conv_usebias,
|
||
|
)
|
||
|
for lnum in range(num_blocks)
|
||
|
]
|
||
|
elif selfattention_layer_type == "lightconv2d":
|
||
|
logging.info(
|
||
|
"encoder self-attention layer " "type = lightweight convolution 2-dimensional"
|
||
|
)
|
||
|
encoder_selfattn_layer = LightweightConvolution2D
|
||
|
encoder_selfattn_layer_args = [
|
||
|
(
|
||
|
conv_wshare,
|
||
|
attention_dim,
|
||
|
attention_dropout_rate,
|
||
|
int(conv_kernel_length.split("_")[lnum]),
|
||
|
False,
|
||
|
conv_usebias,
|
||
|
)
|
||
|
for lnum in range(num_blocks)
|
||
|
]
|
||
|
elif selfattention_layer_type == "dynamicconv":
|
||
|
logging.info("encoder self-attention layer type = dynamic convolution")
|
||
|
encoder_selfattn_layer = DynamicConvolution
|
||
|
encoder_selfattn_layer_args = [
|
||
|
(
|
||
|
conv_wshare,
|
||
|
attention_dim,
|
||
|
attention_dropout_rate,
|
||
|
int(conv_kernel_length.split("_")[lnum]),
|
||
|
False,
|
||
|
conv_usebias,
|
||
|
)
|
||
|
for lnum in range(num_blocks)
|
||
|
]
|
||
|
elif selfattention_layer_type == "dynamicconv2d":
|
||
|
logging.info("encoder self-attention layer type = dynamic convolution 2-dimensional")
|
||
|
encoder_selfattn_layer = DynamicConvolution2D
|
||
|
encoder_selfattn_layer_args = [
|
||
|
(
|
||
|
conv_wshare,
|
||
|
attention_dim,
|
||
|
attention_dropout_rate,
|
||
|
int(conv_kernel_length.split("_")[lnum]),
|
||
|
False,
|
||
|
conv_usebias,
|
||
|
)
|
||
|
for lnum in range(num_blocks)
|
||
|
]
|
||
|
else:
|
||
|
raise NotImplementedError(selfattention_layer_type)
|
||
|
|
||
|
self.encoders = repeat(
|
||
|
num_blocks,
|
||
|
lambda lnum: EncoderLayer(
|
||
|
attention_dim,
|
||
|
encoder_selfattn_layer(*encoder_selfattn_layer_args[lnum]),
|
||
|
positionwise_layer(*positionwise_layer_args),
|
||
|
dropout_rate,
|
||
|
normalize_before,
|
||
|
concat_after,
|
||
|
stochastic_depth_rate * float(1 + lnum) / num_blocks,
|
||
|
),
|
||
|
)
|
||
|
if self.normalize_before:
|
||
|
self.after_norm = LayerNorm(attention_dim)
|
||
|
|
||
|
self.intermediate_layers = intermediate_layers
|
||
|
self.use_conditioning = True if ctc_softmax is not None else False
|
||
|
if self.use_conditioning:
|
||
|
self.ctc_softmax = ctc_softmax
|
||
|
self.conditioning_layer = torch.nn.Linear(conditioning_layer_dim, attention_dim)
|
||
|
|
||
|
def get_positionwise_layer(
|
||
|
self,
|
||
|
positionwise_layer_type="linear",
|
||
|
attention_dim=256,
|
||
|
linear_units=2048,
|
||
|
dropout_rate=0.1,
|
||
|
positionwise_conv_kernel_size=1,
|
||
|
):
|
||
|
"""Define positionwise layer."""
|
||
|
if positionwise_layer_type == "linear":
|
||
|
positionwise_layer = PositionwiseFeedForward
|
||
|
positionwise_layer_args = (attention_dim, linear_units, dropout_rate)
|
||
|
elif positionwise_layer_type == "conv1d":
|
||
|
positionwise_layer = MultiLayeredConv1d
|
||
|
positionwise_layer_args = (
|
||
|
attention_dim,
|
||
|
linear_units,
|
||
|
positionwise_conv_kernel_size,
|
||
|
dropout_rate,
|
||
|
)
|
||
|
elif positionwise_layer_type == "conv1d-linear":
|
||
|
positionwise_layer = Conv1dLinear
|
||
|
positionwise_layer_args = (
|
||
|
attention_dim,
|
||
|
linear_units,
|
||
|
positionwise_conv_kernel_size,
|
||
|
dropout_rate,
|
||
|
)
|
||
|
else:
|
||
|
raise NotImplementedError("Support only linear or conv1d.")
|
||
|
return positionwise_layer, positionwise_layer_args
|
||
|
|
||
|
def forward(self, xs, masks):
|
||
|
"""Encode input sequence.
|
||
|
|
||
|
Args:
|
||
|
xs (torch.Tensor): Input tensor (#batch, time, idim).
|
||
|
masks (torch.Tensor): Mask tensor (#batch, time).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, time, attention_dim).
|
||
|
torch.Tensor: Mask tensor (#batch, time).
|
||
|
|
||
|
"""
|
||
|
if isinstance(
|
||
|
self.embed,
|
||
|
(Conv2dSubsampling, Conv2dSubsampling6, Conv2dSubsampling8),
|
||
|
):
|
||
|
xs, masks = self.embed(xs, masks)
|
||
|
else:
|
||
|
xs = self.embed(xs)
|
||
|
|
||
|
if self.intermediate_layers is None:
|
||
|
xs, masks = self.encoders(xs, masks)
|
||
|
else:
|
||
|
intermediate_outputs = []
|
||
|
for layer_idx, encoder_layer in enumerate(self.encoders):
|
||
|
xs, masks = encoder_layer(xs, masks)
|
||
|
|
||
|
if (
|
||
|
self.intermediate_layers is not None
|
||
|
and layer_idx + 1 in self.intermediate_layers
|
||
|
):
|
||
|
encoder_output = xs
|
||
|
# intermediate branches also require normalization.
|
||
|
if self.normalize_before:
|
||
|
encoder_output = self.after_norm(encoder_output)
|
||
|
intermediate_outputs.append(encoder_output)
|
||
|
|
||
|
if self.use_conditioning:
|
||
|
intermediate_result = self.ctc_softmax(encoder_output)
|
||
|
xs = xs + self.conditioning_layer(intermediate_result)
|
||
|
|
||
|
if self.normalize_before:
|
||
|
xs = self.after_norm(xs)
|
||
|
|
||
|
if self.intermediate_layers is not None:
|
||
|
return xs, masks, intermediate_outputs
|
||
|
return xs, masks
|
||
|
|
||
|
def forward_one_step(self, xs, masks, cache=None):
|
||
|
"""Encode input frame.
|
||
|
|
||
|
Args:
|
||
|
xs (torch.Tensor): Input tensor.
|
||
|
masks (torch.Tensor): Mask tensor.
|
||
|
cache (List[torch.Tensor]): List of cache tensors.
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor.
|
||
|
torch.Tensor: Mask tensor.
|
||
|
List[torch.Tensor]: List of new cache tensors.
|
||
|
|
||
|
"""
|
||
|
if isinstance(self.embed, Conv2dSubsampling):
|
||
|
xs, masks = self.embed(xs, masks)
|
||
|
else:
|
||
|
xs = self.embed(xs)
|
||
|
if cache is None:
|
||
|
cache = [None for _ in range(len(self.encoders))]
|
||
|
new_cache = []
|
||
|
for c, e in zip(cache, self.encoders):
|
||
|
xs, masks = e(xs, masks, cache=c)
|
||
|
new_cache.append(xs)
|
||
|
if self.normalize_before:
|
||
|
xs = self.after_norm(xs)
|
||
|
return xs, masks, new_cache
|