402 lines
12 KiB
Python
402 lines
12 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
#
|
||
|
# This source code is licensed under the MIT license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import logging
|
||
|
import math
|
||
|
from typing import List, Tuple
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from funasr.models.data2vec import utils
|
||
|
from funasr.models.data2vec.multihead_attention import MultiheadAttention
|
||
|
|
||
|
|
||
|
class ConvFeatureExtractionModel(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
conv_layers: List[Tuple[int, int, int]],
|
||
|
dropout: float = 0.0,
|
||
|
mode: str = "default",
|
||
|
conv_bias: bool = False,
|
||
|
in_d: int = 1,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
assert mode in {"default", "layer_norm"}
|
||
|
|
||
|
def block(
|
||
|
n_in,
|
||
|
n_out,
|
||
|
k,
|
||
|
stride,
|
||
|
is_layer_norm=False,
|
||
|
is_group_norm=False,
|
||
|
conv_bias=False,
|
||
|
):
|
||
|
def make_conv():
|
||
|
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
|
||
|
nn.init.kaiming_normal_(conv.weight)
|
||
|
return conv
|
||
|
|
||
|
assert (
|
||
|
is_layer_norm and is_group_norm
|
||
|
) == False, "layer norm and group norm are exclusive"
|
||
|
|
||
|
if is_layer_norm:
|
||
|
return nn.Sequential(
|
||
|
make_conv(),
|
||
|
nn.Dropout(p=dropout),
|
||
|
nn.Sequential(
|
||
|
utils.TransposeLast(),
|
||
|
utils.Fp32LayerNorm(dim, elementwise_affine=True),
|
||
|
utils.TransposeLast(),
|
||
|
),
|
||
|
nn.GELU(),
|
||
|
)
|
||
|
elif is_group_norm:
|
||
|
return nn.Sequential(
|
||
|
make_conv(),
|
||
|
nn.Dropout(p=dropout),
|
||
|
utils.Fp32GroupNorm(dim, dim, affine=True),
|
||
|
nn.GELU(),
|
||
|
)
|
||
|
else:
|
||
|
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
|
||
|
|
||
|
self.conv_layers = nn.ModuleList()
|
||
|
for i, cl in enumerate(conv_layers):
|
||
|
assert len(cl) == 3, "invalid conv definition: " + str(cl)
|
||
|
(dim, k, stride) = cl
|
||
|
|
||
|
self.conv_layers.append(
|
||
|
block(
|
||
|
in_d,
|
||
|
dim,
|
||
|
k,
|
||
|
stride,
|
||
|
is_layer_norm=mode == "layer_norm",
|
||
|
is_group_norm=mode == "default" and i == 0,
|
||
|
conv_bias=conv_bias,
|
||
|
)
|
||
|
)
|
||
|
in_d = dim
|
||
|
|
||
|
def forward(self, x):
|
||
|
if len(x.shape) == 2:
|
||
|
x = x.unsqueeze(1)
|
||
|
else:
|
||
|
x = x.transpose(1, 2)
|
||
|
|
||
|
for conv in self.conv_layers:
|
||
|
x = conv(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def make_conv_pos(e, k, g):
|
||
|
pos_conv = nn.Conv1d(
|
||
|
e,
|
||
|
e,
|
||
|
kernel_size=k,
|
||
|
padding=k // 2,
|
||
|
groups=g,
|
||
|
)
|
||
|
dropout = 0
|
||
|
std = math.sqrt((4 * (1.0 - dropout)) / (k * e))
|
||
|
nn.init.normal_(pos_conv.weight, mean=0, std=std)
|
||
|
nn.init.constant_(pos_conv.bias, 0)
|
||
|
|
||
|
pos_conv = nn.utils.weight_norm(pos_conv, name="weight", dim=2)
|
||
|
pos_conv = nn.Sequential(pos_conv, utils.SamePad(k), nn.GELU())
|
||
|
|
||
|
return pos_conv
|
||
|
|
||
|
|
||
|
class TransformerEncoder(nn.Module):
|
||
|
def build_encoder_layer(self):
|
||
|
if self.layer_type == "transformer":
|
||
|
layer = TransformerSentenceEncoderLayer(
|
||
|
embedding_dim=self.embedding_dim,
|
||
|
ffn_embedding_dim=self.encoder_ffn_embed_dim,
|
||
|
num_attention_heads=self.encoder_attention_heads,
|
||
|
dropout=self.dropout,
|
||
|
attention_dropout=self.attention_dropout,
|
||
|
activation_dropout=self.activation_dropout,
|
||
|
activation_fn=self.activation_fn,
|
||
|
layer_norm_first=self.layer_norm_first,
|
||
|
)
|
||
|
else:
|
||
|
logging.error("Only transformer is supported for data2vec now")
|
||
|
return layer
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
# position
|
||
|
dropout,
|
||
|
encoder_embed_dim,
|
||
|
required_seq_len_multiple,
|
||
|
pos_conv_depth,
|
||
|
conv_pos,
|
||
|
conv_pos_groups,
|
||
|
# transformer layers
|
||
|
layer_type,
|
||
|
encoder_layers,
|
||
|
encoder_ffn_embed_dim,
|
||
|
encoder_attention_heads,
|
||
|
attention_dropout,
|
||
|
activation_dropout,
|
||
|
activation_fn,
|
||
|
layer_norm_first,
|
||
|
encoder_layerdrop,
|
||
|
max_positions,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
# position
|
||
|
self.dropout = dropout
|
||
|
self.embedding_dim = encoder_embed_dim
|
||
|
self.required_seq_len_multiple = required_seq_len_multiple
|
||
|
if pos_conv_depth > 1:
|
||
|
num_layers = pos_conv_depth
|
||
|
k = max(3, conv_pos // num_layers)
|
||
|
|
||
|
def make_conv_block(e, k, g, l):
|
||
|
return nn.Sequential(
|
||
|
*[
|
||
|
nn.Sequential(
|
||
|
nn.Conv1d(
|
||
|
e,
|
||
|
e,
|
||
|
kernel_size=k,
|
||
|
padding=k // 2,
|
||
|
groups=g,
|
||
|
),
|
||
|
utils.SamePad(k),
|
||
|
utils.TransposeLast(),
|
||
|
torch.nn.LayerNorm(e, elementwise_affine=False),
|
||
|
utils.TransposeLast(),
|
||
|
nn.GELU(),
|
||
|
)
|
||
|
for _ in range(l)
|
||
|
]
|
||
|
)
|
||
|
|
||
|
self.pos_conv = make_conv_block(self.embedding_dim, k, conv_pos_groups, num_layers)
|
||
|
|
||
|
else:
|
||
|
self.pos_conv = make_conv_pos(
|
||
|
self.embedding_dim,
|
||
|
conv_pos,
|
||
|
conv_pos_groups,
|
||
|
)
|
||
|
|
||
|
# transformer layers
|
||
|
self.layer_type = layer_type
|
||
|
self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
|
||
|
self.encoder_attention_heads = encoder_attention_heads
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.activation_dropout = activation_dropout
|
||
|
self.activation_fn = activation_fn
|
||
|
self.layer_norm_first = layer_norm_first
|
||
|
self.layerdrop = encoder_layerdrop
|
||
|
self.max_positions = max_positions
|
||
|
self.layers = nn.ModuleList([self.build_encoder_layer() for _ in range(encoder_layers)])
|
||
|
self.layer_norm = torch.nn.LayerNorm(self.embedding_dim)
|
||
|
|
||
|
self.apply(utils.init_bert_params)
|
||
|
|
||
|
def forward(self, x, padding_mask=None, layer=None):
|
||
|
x, layer_results = self.extract_features(x, padding_mask, layer)
|
||
|
|
||
|
if self.layer_norm_first and layer is None:
|
||
|
x = self.layer_norm(x)
|
||
|
|
||
|
return x, layer_results
|
||
|
|
||
|
def extract_features(
|
||
|
self,
|
||
|
x,
|
||
|
padding_mask=None,
|
||
|
tgt_layer=None,
|
||
|
min_layer=0,
|
||
|
):
|
||
|
|
||
|
if padding_mask is not None:
|
||
|
x[padding_mask] = 0
|
||
|
|
||
|
x_conv = self.pos_conv(x.transpose(1, 2))
|
||
|
x_conv = x_conv.transpose(1, 2)
|
||
|
x = x + x_conv
|
||
|
|
||
|
if not self.layer_norm_first:
|
||
|
x = self.layer_norm(x)
|
||
|
|
||
|
# pad to the sequence length dimension
|
||
|
x, pad_length = utils.pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0)
|
||
|
if pad_length > 0 and padding_mask is None:
|
||
|
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
|
||
|
padding_mask[:, -pad_length:] = True
|
||
|
else:
|
||
|
padding_mask, _ = utils.pad_to_multiple(
|
||
|
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
|
||
|
)
|
||
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
||
|
|
||
|
# B x T x C -> T x B x C
|
||
|
x = x.transpose(0, 1)
|
||
|
|
||
|
layer_results = []
|
||
|
r = None
|
||
|
for i, layer in enumerate(self.layers):
|
||
|
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
|
||
|
if not self.training or (dropout_probability > self.layerdrop):
|
||
|
x, (z, lr) = layer(x, self_attn_padding_mask=padding_mask)
|
||
|
if i >= min_layer:
|
||
|
layer_results.append((x, z, lr))
|
||
|
if i == tgt_layer:
|
||
|
r = x
|
||
|
break
|
||
|
|
||
|
if r is not None:
|
||
|
x = r
|
||
|
|
||
|
# T x B x C -> B x T x C
|
||
|
x = x.transpose(0, 1)
|
||
|
|
||
|
# undo paddding
|
||
|
if pad_length > 0:
|
||
|
x = x[:, :-pad_length]
|
||
|
|
||
|
def undo_pad(a, b, c):
|
||
|
return (
|
||
|
a[:-pad_length],
|
||
|
b[:-pad_length] if b is not None else b,
|
||
|
c[:-pad_length],
|
||
|
)
|
||
|
|
||
|
layer_results = [undo_pad(*u) for u in layer_results]
|
||
|
|
||
|
return x, layer_results
|
||
|
|
||
|
def max_positions(self):
|
||
|
"""Maximum output length supported by the encoder."""
|
||
|
return self.max_positions
|
||
|
|
||
|
def upgrade_state_dict_named(self, state_dict, name):
|
||
|
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
|
||
|
return state_dict
|
||
|
|
||
|
|
||
|
class TransformerSentenceEncoderLayer(nn.Module):
|
||
|
"""
|
||
|
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embedding_dim: int = 768,
|
||
|
ffn_embedding_dim: int = 3072,
|
||
|
num_attention_heads: int = 8,
|
||
|
dropout: float = 0.1,
|
||
|
attention_dropout: float = 0.1,
|
||
|
activation_dropout: float = 0.1,
|
||
|
activation_fn: str = "relu",
|
||
|
layer_norm_first: bool = False,
|
||
|
) -> None:
|
||
|
|
||
|
super().__init__()
|
||
|
# Initialize parameters
|
||
|
self.embedding_dim = embedding_dim
|
||
|
self.dropout = dropout
|
||
|
self.activation_dropout = activation_dropout
|
||
|
|
||
|
# Initialize blocks
|
||
|
self.activation_fn = utils.get_activation_fn(activation_fn)
|
||
|
self.self_attn = MultiheadAttention(
|
||
|
self.embedding_dim,
|
||
|
num_attention_heads,
|
||
|
dropout=attention_dropout,
|
||
|
self_attention=True,
|
||
|
)
|
||
|
|
||
|
self.dropout1 = nn.Dropout(dropout)
|
||
|
self.dropout2 = nn.Dropout(self.activation_dropout)
|
||
|
self.dropout3 = nn.Dropout(dropout)
|
||
|
|
||
|
self.layer_norm_first = layer_norm_first
|
||
|
|
||
|
# layer norm associated with the self attention layer
|
||
|
self.self_attn_layer_norm = torch.nn.LayerNorm(self.embedding_dim)
|
||
|
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
||
|
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
||
|
|
||
|
# layer norm associated with the position wise feed-forward NN
|
||
|
self.final_layer_norm = torch.nn.LayerNorm(self.embedding_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
x: torch.Tensor, # (T, B, C)
|
||
|
self_attn_mask: torch.Tensor = None,
|
||
|
self_attn_padding_mask: torch.Tensor = None,
|
||
|
):
|
||
|
"""
|
||
|
LayerNorm is applied either before or after the self-attention/ffn
|
||
|
modules similar to the original Transformer imlementation.
|
||
|
"""
|
||
|
residual = x
|
||
|
|
||
|
if self.layer_norm_first:
|
||
|
x = self.self_attn_layer_norm(x)
|
||
|
x, attn = self.self_attn(
|
||
|
query=x,
|
||
|
key=x,
|
||
|
value=x,
|
||
|
key_padding_mask=self_attn_padding_mask,
|
||
|
attn_mask=self_attn_mask,
|
||
|
need_weights=False,
|
||
|
)
|
||
|
x = self.dropout1(x)
|
||
|
x = residual + x
|
||
|
|
||
|
residual = x
|
||
|
x = self.final_layer_norm(x)
|
||
|
x = self.activation_fn(self.fc1(x))
|
||
|
x = self.dropout2(x)
|
||
|
x = self.fc2(x)
|
||
|
|
||
|
layer_result = x
|
||
|
|
||
|
x = self.dropout3(x)
|
||
|
x = residual + x
|
||
|
else:
|
||
|
x, attn = self.self_attn(
|
||
|
query=x,
|
||
|
key=x,
|
||
|
value=x,
|
||
|
key_padding_mask=self_attn_padding_mask,
|
||
|
need_weights=False,
|
||
|
)
|
||
|
|
||
|
x = self.dropout1(x)
|
||
|
x = residual + x
|
||
|
|
||
|
x = self.self_attn_layer_norm(x)
|
||
|
|
||
|
residual = x
|
||
|
x = self.activation_fn(self.fc1(x))
|
||
|
x = self.dropout2(x)
|
||
|
x = self.fc2(x)
|
||
|
|
||
|
layer_result = x
|
||
|
|
||
|
x = self.dropout3(x)
|
||
|
x = residual + x
|
||
|
x = self.final_layer_norm(x)
|
||
|
|
||
|
return x, (attn, layer_result)
|