154 lines
4.9 KiB
Python
154 lines
4.9 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
#
|
||
|
# This source code is licensed under the MIT license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
from contextlib import contextmanager
|
||
|
from distutils.version import LooseVersion
|
||
|
from typing import Dict
|
||
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
# from funasr.layers.abs_normalize import AbsNormalize
|
||
|
# from funasr.models.base_model import FunASRModel
|
||
|
# from funasr.models.encoder.abs_encoder import AbsEncoder
|
||
|
from funasr.frontends.abs_frontend import AbsFrontend
|
||
|
|
||
|
# from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
||
|
# from funasr.models.specaug.abs_specaug import AbsSpecAug
|
||
|
from funasr.train_utils.device_funcs import force_gatherable
|
||
|
|
||
|
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
||
|
from torch.cuda.amp import autocast
|
||
|
else:
|
||
|
# Nothing to do if torch<1.6.0
|
||
|
@contextmanager
|
||
|
def autocast(enabled=True):
|
||
|
yield
|
||
|
|
||
|
|
||
|
class Data2VecPretrainModel(nn.Module):
|
||
|
"""Data2Vec Pretrain model"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
frontend=None,
|
||
|
specaug=None,
|
||
|
normalize=None,
|
||
|
encoder=None,
|
||
|
preencoder=None,
|
||
|
):
|
||
|
|
||
|
super().__init__()
|
||
|
|
||
|
self.frontend = frontend
|
||
|
self.specaug = specaug
|
||
|
self.normalize = normalize
|
||
|
self.preencoder = preencoder
|
||
|
self.encoder = encoder
|
||
|
self.num_updates = 0
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
speech: torch.Tensor,
|
||
|
speech_lengths: torch.Tensor,
|
||
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||
|
"""Frontend + Encoder + Calc loss
|
||
|
Args:
|
||
|
speech: (Batch, Length, ...)
|
||
|
speech_lengths: (Batch, )
|
||
|
"""
|
||
|
# Check that batch_size is unified
|
||
|
assert speech.shape[0] == speech_lengths.shape[0], (speech.shape, speech_lengths.shape)
|
||
|
|
||
|
self.encoder.set_num_updates(self.num_updates)
|
||
|
|
||
|
# 1. Encoder
|
||
|
encoder_out = self.encode(speech, speech_lengths)
|
||
|
|
||
|
losses = encoder_out["losses"]
|
||
|
loss = sum(losses.values())
|
||
|
sample_size = encoder_out["sample_size"]
|
||
|
loss = loss.sum() / sample_size
|
||
|
|
||
|
target_var = float(encoder_out["target_var"])
|
||
|
pred_var = float(encoder_out["pred_var"])
|
||
|
ema_decay = float(encoder_out["ema_decay"])
|
||
|
|
||
|
stats = dict(
|
||
|
loss=torch.clone(loss.detach()),
|
||
|
target_var=target_var,
|
||
|
pred_var=pred_var,
|
||
|
ema_decay=ema_decay,
|
||
|
)
|
||
|
|
||
|
loss, stats, weight = force_gatherable((loss, stats, sample_size), loss.device)
|
||
|
return loss, stats, weight
|
||
|
|
||
|
def collect_feats(
|
||
|
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||
|
) -> Dict[str, torch.Tensor]:
|
||
|
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||
|
return {"feats": feats, "feats_lengths": feats_lengths}
|
||
|
|
||
|
def encode(
|
||
|
self,
|
||
|
speech: torch.Tensor,
|
||
|
speech_lengths: torch.Tensor,
|
||
|
):
|
||
|
"""Frontend + Encoder.
|
||
|
Args:
|
||
|
speech: (Batch, Length, ...)
|
||
|
speech_lengths: (Batch, )
|
||
|
"""
|
||
|
with autocast(False):
|
||
|
# 1. Extract feats
|
||
|
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||
|
|
||
|
# 2. Data augmentation
|
||
|
if self.specaug is not None and self.training:
|
||
|
feats, feats_lengths = self.specaug(feats, feats_lengths)
|
||
|
|
||
|
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
||
|
if self.normalize is not None:
|
||
|
feats, feats_lengths = self.normalize(feats, feats_lengths)
|
||
|
|
||
|
# Pre-encoder, e.g. used for raw input data
|
||
|
if self.preencoder is not None:
|
||
|
feats, feats_lengths = self.preencoder(feats, feats_lengths)
|
||
|
|
||
|
# 4. Forward encoder
|
||
|
if min(speech_lengths) == max(speech_lengths): # for clipping, set speech_lengths as None
|
||
|
speech_lengths = None
|
||
|
encoder_out = self.encoder(feats, speech_lengths, mask=True, features_only=False)
|
||
|
|
||
|
return encoder_out
|
||
|
|
||
|
def _extract_feats(
|
||
|
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
assert speech_lengths.dim() == 1, speech_lengths.shape
|
||
|
|
||
|
# for data-parallel
|
||
|
speech = speech[:, : speech_lengths.max()]
|
||
|
|
||
|
if self.frontend is not None:
|
||
|
# Frontend
|
||
|
# e.g. STFT and Feature extract
|
||
|
# data_loader may send time-domain signal in this case
|
||
|
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
|
||
|
feats, feats_lengths = self.frontend(speech, speech_lengths)
|
||
|
else:
|
||
|
# No frontend and no feature extract
|
||
|
feats, feats_lengths = speech, speech_lengths
|
||
|
return feats, feats_lengths
|
||
|
|
||
|
def set_num_updates(self, num_updates):
|
||
|
self.num_updates = num_updates
|
||
|
|
||
|
def get_num_updates(self):
|
||
|
return self.num_updates
|