FunASR/funasr/models/conformer_rwkv/decoder.py

518 lines
19 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
# Copyright 2019 Shigeki Karita
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Decoder definition."""
from typing import Any
from typing import List
from typing import Sequence
from typing import Tuple
import torch
from torch import nn
from funasr.models.transformer.attention import MultiHeadedAttention
from funasr.models.transformer.utils.dynamic_conv import DynamicConvolution
from funasr.models.transformer.utils.dynamic_conv2d import DynamicConvolution2D
from funasr.models.transformer.embedding import PositionalEncoding
from funasr.models.transformer.layer_norm import LayerNorm
from funasr.models.transformer.utils.lightconv import LightweightConvolution
from funasr.models.transformer.utils.lightconv2d import LightweightConvolution2D
from funasr.models.transformer.utils.mask import subsequent_mask
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward, # noqa: H301
)
from funasr.models.transformer.utils.repeat import repeat
from funasr.models.transformer.scorers.scorer_interface import BatchScorerInterface
from omegaconf import OmegaConf
from funasr.register import tables
class LayerNorm(nn.LayerNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
class DecoderLayer(nn.Module):
"""Single decoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
src_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
size,
# self_attn,
src_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
layer_id=None,
args={},
**kwargs,
):
"""Construct an DecoderLayer object."""
super(DecoderLayer, self).__init__()
self.size = size
# self.self_attn = self_attn.to(torch.bfloat16)
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(size)
self.norm2 = LayerNorm(size)
self.norm3 = LayerNorm(size)
self.dropout = nn.Dropout(dropout_rate)
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear1 = nn.Linear(size + size, size)
self.concat_linear2 = nn.Linear(size + size, size)
self.layer_id = layer_id
if args.get("version", "v4") == "v4":
from funasr.models.sense_voice.rwkv_v4 import RWKVLayer
from funasr.models.sense_voice.rwkv_v4 import RWKV_TimeMix as RWKV_Tmix
elif args.get("version", "v5") == "v5":
from funasr.models.sense_voice.rwkv_v5 import RWKVLayer
from funasr.models.sense_voice.rwkv_v5 import RWKV_Tmix_x052 as RWKV_Tmix
else:
from funasr.models.sense_voice.rwkv_v6 import RWKVLayer
from funasr.models.sense_voice.rwkv_v6 import RWKV_Tmix_x060 as RWKV_Tmix
# self.attn = RWKVLayer(args=args, layer_id=layer_id)
self.self_attn = RWKV_Tmix(args, layer_id=layer_id)
self.args = args
self.ln0 = None
if self.layer_id == 0 and not args.get("ln0", True):
self.ln0 = LayerNorm(args.n_embd)
if args.get("init_rwkv", True):
print("init_rwkv")
layer_id = 0
scale = ((1 + layer_id) / args.get("n_layer")) ** 0.7
nn.init.constant_(self.ln0.weight, scale)
# init
if args.get("init_rwkv", True):
print("init_rwkv")
scale = ((1 + layer_id) / args.get("n_layer")) ** 0.7
nn.init.constant_(self.norm1.weight, scale)
# nn.init.constant_(self.self_attn.ln2.weight, scale)
if args.get("init_rwkv", True):
print("init_rwkv")
nn.init.orthogonal_(self.self_attn.receptance.weight, gain=1)
nn.init.orthogonal_(self.self_attn.key.weight, gain=0.1)
nn.init.orthogonal_(self.self_attn.value.weight, gain=1)
nn.init.orthogonal_(self.self_attn.gate.weight, gain=0.1)
nn.init.zeros_(self.self_attn.output.weight)
if args.get("datatype", "bf16") == "bf16":
self.self_attn.to(torch.bfloat16)
# self.norm1.to(torch.bfloat16)
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
if self.layer_id == 0 and self.ln0 is not None:
tgt = self.ln0(tgt)
if self.args.get("datatype", "bf16") == "bf16":
tgt = tgt.bfloat16()
residual = tgt
tgt = self.norm1(tgt)
if cache is None:
x = residual + self.dropout(self.self_attn(tgt, mask=tgt_mask))
else:
# tgt_q = tgt[:, -1:, :]
# residual_q = residual[:, -1:, :]
tgt_q_mask = None
x = residual + self.dropout(self.self_attn(tgt, mask=tgt_q_mask))
x = x[:, -1, :]
if self.args.get("datatype", "bf16") == "bf16":
x = x.to(torch.float32)
# x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask))
residual = x
x = self.norm2(x)
x = residual + self.dropout(self.src_attn(x, memory, memory, memory_mask))
residual = x
x = self.norm3(x)
x = residual + self.dropout(self.feed_forward(x))
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, tgt_mask, memory, memory_mask
class BaseTransformerDecoder(nn.Module, BatchScorerInterface):
"""Base class of Transfomer decoder module.
Args:
vocab_size: output dim
encoder_output_size: dimension of attention
attention_heads: the number of heads of multi head attention
linear_units: the number of units of position-wise feed forward
num_blocks: the number of decoder blocks
dropout_rate: dropout rate
self_attention_dropout_rate: dropout rate for attention
input_layer: input layer type
use_output_layer: whether to use output layer
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
normalize_before: whether to use layer_norm before the first block
concat_after: whether to concat attention layer's input and output
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied.
i.e. x -> x + att(x)
"""
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
):
super().__init__()
attention_dim = encoder_output_size
if input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(vocab_size, attention_dim),
pos_enc_class(attention_dim, positional_dropout_rate),
)
elif input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(vocab_size, attention_dim),
torch.nn.LayerNorm(attention_dim),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(attention_dim, positional_dropout_rate),
)
else:
raise ValueError(f"only 'embed' or 'linear' is supported: {input_layer}")
self.normalize_before = normalize_before
if self.normalize_before:
self.after_norm = LayerNorm(attention_dim)
if use_output_layer:
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
else:
self.output_layer = None
# Must set by the inheritance
self.decoders = None
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
# tgt_mask: (B, 1, L)
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device)
# m: (1, L, L)
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask & m
memory = hs_pad
memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to(memory.device)
# Padding for Longformer
if memory_mask.shape[-1] != memory.shape[1]:
padlen = memory.shape[1] - memory_mask.shape[-1]
memory_mask = torch.nn.functional.pad(memory_mask, (0, padlen), "constant", False)
x = self.embed(tgt)
x, tgt_mask, memory, memory_mask = self.decoders(x, tgt_mask, memory, memory_mask)
if self.normalize_before:
x = self.after_norm(x)
if self.output_layer is not None:
x = self.output_layer(x)
olens = tgt_mask.sum(1)
return x, olens
def forward_one_step(
self,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
memory: torch.Tensor,
cache: List[torch.Tensor] = None,
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward one step.
Args:
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
memory: encoded memory, float32 (batch, maxlen_in, feat)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
x = self.embed(tgt)
if cache is None:
cache = [None] * len(self.decoders)
new_cache = []
for c, decoder in zip(cache, self.decoders):
x, tgt_mask, memory, memory_mask = decoder(x, tgt_mask, memory, None, cache=c)
new_cache.append(x)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.output_layer is not None:
y = torch.log_softmax(self.output_layer(y), dim=-1)
return y, new_cache
def score(self, ys, state, x):
"""Score."""
ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0)
logp, state = self.forward_one_step(ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state)
return logp.squeeze(0), state
def batch_score(
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
) -> Tuple[torch.Tensor, List[Any]]:
"""Score new token batch.
Args:
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
states (List[Any]): Scorer states for prefix tokens.
xs (torch.Tensor):
The encoder feature that generates ys (n_batch, xlen, n_feat).
Returns:
tuple[torch.Tensor, List[Any]]: Tuple of
batchfied scores for next token with shape of `(n_batch, n_vocab)`
and next state list for ys.
"""
# merge states
n_batch = len(ys)
n_layers = len(self.decoders)
if states[0] is None:
batch_state = None
else:
# transpose state of [batch, layer] into [layer, batch]
batch_state = [
torch.stack([states[b][i] for b in range(n_batch)]) for i in range(n_layers)
]
# batch decoding
ys_mask = subsequent_mask(ys.size(-1), device=xs.device).unsqueeze(0)
logp, states = self.forward_one_step(ys, ys_mask, xs, cache=batch_state)
# transpose state of [layer, batch] into [batch, layer]
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
return logp, state_list
@tables.register("decoder_classes", "TransformerRWKVDecoder")
class TransformerRWKVDecoder(BaseTransformerDecoder):
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
# from funasr.models.sense_voice.rwkv_v6 import RWKVLayer
rwkv_cfg = kwargs.get("rwkv_cfg", {})
args = OmegaConf.create(rwkv_cfg)
attention_dim = encoder_output_size
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
lnum,
args=args,
),
)
# init
if args.get("init_rwkv", True):
print("init_rwkv")
nn.init.uniform_(self.embed[0].weight, a=-1e-4, b=1e-4)
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
# tgt_mask: (B, 1, L)
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device)
# m: (1, L, L)
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask & m
memory = hs_pad
memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to(memory.device)
# Padding for Longformer
if memory_mask.shape[-1] != memory.shape[1]:
padlen = memory.shape[1] - memory_mask.shape[-1]
memory_mask = torch.nn.functional.pad(memory_mask, (0, padlen), "constant", False)
x = self.embed(tgt)
x, tgt_mask, memory, memory_mask = self.decoders(x, tgt_mask, memory, memory_mask)
if self.normalize_before:
x = self.after_norm(x)
if self.output_layer is not None:
x = self.output_layer(x)
olens = tgt_mask.sum(1)
return x, olens
def forward_one_step(
self,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
memory: torch.Tensor,
cache: List[torch.Tensor] = None,
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward one step.
Args:
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
memory: encoded memory, float32 (batch, maxlen_in, feat)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
x = self.embed(tgt)
if cache is None:
cache = [None] * len(self.decoders)
new_cache = []
for c, decoder in zip(cache, self.decoders):
x, tgt_mask, memory, memory_mask = decoder(x, tgt_mask, memory, None, cache=c)
new_cache.append(x)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.output_layer is not None:
y = torch.log_softmax(self.output_layer(y), dim=-1)
return y, new_cache