FunASR/funasr/models/bicif_paraformer/export_meta.py

87 lines
2.8 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
import types
from funasr.register import tables
def export_rebuild_model(model, **kwargs):
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export")
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export")
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False)
model.forward = types.MethodType(export_forward, model)
model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model)
model.export_input_names = types.MethodType(export_input_names, model)
model.export_output_names = types.MethodType(export_output_names, model)
model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model)
model.export_name = types.MethodType(export_name, model)
return model
def export_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
):
# a. To device
batch = {"speech": speech, "speech_lengths": speech_lengths}
enc, enc_len = self.encoder(**batch)
mask = self.make_pad_mask(enc_len)[:, None, :]
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(enc, mask)
pre_token_length = pre_token_length.round().type(torch.int32)
decoder_out, _ = self.decoder(enc, enc_len, pre_acoustic_embeds, pre_token_length)
decoder_out = torch.log_softmax(decoder_out, dim=-1)
# get predicted timestamps
us_alphas, us_cif_peak = self.predictor.get_upsample_timestmap(enc, mask, pre_token_length)
return decoder_out, pre_token_length, us_alphas, us_cif_peak
def export_dummy_inputs(self):
speech = torch.randn(2, 30, 560)
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
return (speech, speech_lengths)
def export_input_names(self):
return ["speech", "speech_lengths"]
def export_output_names(self):
return ["logits", "token_num", "us_alphas", "us_cif_peak"]
def export_dynamic_axes(self):
return {
"speech": {0: "batch_size", 1: "feats_length"},
"speech_lengths": {
0: "batch_size",
},
"logits": {0: "batch_size", 1: "logits_length"},
"us_alphas": {0: "batch_size", 1: "alphas_length"},
"us_cif_peak": {0: "batch_size", 1: "alphas_length"},
}
def export_name(self):
return "model.onnx"