53 lines
2.1 KiB
Python
53 lines
2.1 KiB
Python
|
import os
|
||
|
import argparse
|
||
|
from pathlib import Path
|
||
|
|
||
|
from funasr.utils.types import str2bool
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--model-name", type=str, required=True)
|
||
|
parser.add_argument("--export-dir", type=str, required=True)
|
||
|
parser.add_argument("--export", type=str2bool, default=True, help="whether to export model")
|
||
|
parser.add_argument("--type", type=str, default="onnx", help='["onnx", "torch"]')
|
||
|
parser.add_argument("--device", type=str, default="cpu", help='["cpu", "cuda"]')
|
||
|
parser.add_argument("--quantize", type=str2bool, default=False, help="export quantized model")
|
||
|
parser.add_argument("--fallback-num", type=int, default=0, help="amp fallback number")
|
||
|
parser.add_argument("--audio_in", type=str, default=None, help='["wav", "wav.scp"]')
|
||
|
parser.add_argument("--model_revision", type=str, default=None, help="model_revision")
|
||
|
parser.add_argument("--calib_num", type=int, default=200, help="calib max num")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
model_dir = args.model_name
|
||
|
output_dir = args.model_name
|
||
|
if not Path(args.model_name).exists():
|
||
|
from modelscope.hub.snapshot_download import snapshot_download
|
||
|
|
||
|
try:
|
||
|
model_dir = snapshot_download(
|
||
|
args.model_name, cache_dir=args.export_dir, revision=args.model_revision
|
||
|
)
|
||
|
output_dir = os.path.join(args.export_dir, args.model_name)
|
||
|
except:
|
||
|
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(
|
||
|
model_dir
|
||
|
)
|
||
|
if args.export:
|
||
|
model_file = os.path.join(model_dir, "model.onnx")
|
||
|
if args.quantize:
|
||
|
model_file = os.path.join(model_dir, "model_quant.onnx")
|
||
|
if not os.path.exists(model_file):
|
||
|
print(".onnx is not exist, begin to export onnx")
|
||
|
from funasr import AutoModel
|
||
|
|
||
|
export_model = AutoModel(model=args.model_name, output_dir=output_dir)
|
||
|
export_model.export(
|
||
|
quantize=args.quantize,
|
||
|
type=args.type,
|
||
|
)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|