FunASR/funasr/datasets/large_datasets/utils/clipping.py

45 lines
1.4 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
import numpy as np
import torch
from funasr.datasets.large_datasets.collate_fn import crop_to_max_size
def clipping(data):
assert isinstance(data, list)
assert "key" in data[0]
keys = [x["key"] for x in data]
batch = {}
data_names = data[0].keys()
for data_name in data_names:
if data_name == "key":
continue
else:
if data[0][data_name].dtype.kind == "i":
tensor_type = torch.int64
else:
tensor_type = torch.float32
tensor_list = [torch.tensor(np.copy(d[data_name]), dtype=tensor_type) for d in data]
tensor_lengths = torch.tensor([len(d[data_name]) for d in data], dtype=torch.int32)
length_clip = min(tensor_lengths)
tensor_clip = tensor_list[0].new_zeros(
len(tensor_list), length_clip, tensor_list[0].shape[1]
)
for i, (tensor, length) in enumerate(zip(tensor_list, tensor_lengths)):
diff = length - length_clip
assert diff >= 0
if diff == 0:
tensor_clip[i] = tensor
else:
tensor_clip[i] = crop_to_max_size(tensor, length_clip)
batch[data_name] = tensor_clip
batch[data_name + "_lengths"] = torch.tensor(
[tensor.shape[0] for tensor in tensor_clip], dtype=torch.long
)
return keys, batch