FunASR/funasr/datasets/large_datasets/collate_fn.py

195 lines
6.0 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
from typing import Collection
from typing import Dict
from typing import List
from typing import Tuple
from typing import Union
import numpy as np
import torch
from funasr.models.transformer.utils.nets_utils import pad_list, pad_list_all_dim
class CommonCollateFn:
"""Functor class of common_collate_fn()"""
def __init__(
self,
float_pad_value: Union[float, int] = 0.0,
int_pad_value: int = -32768,
not_sequence: Collection[str] = (),
max_sample_size=None,
):
self.float_pad_value = float_pad_value
self.int_pad_value = int_pad_value
self.not_sequence = set(not_sequence)
self.max_sample_size = max_sample_size
def __repr__(self):
return (
f"{self.__class__}(float_pad_value={self.float_pad_value}, "
f"int_pad_value={self.float_pad_value})"
)
def __call__(
self, data: Collection[Tuple[str, Dict[str, np.ndarray]]]
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
return common_collate_fn(
data,
float_pad_value=self.float_pad_value,
int_pad_value=self.int_pad_value,
not_sequence=self.not_sequence,
)
def common_collate_fn(
data: Collection[Tuple[str, Dict[str, np.ndarray]]],
float_pad_value: Union[float, int] = 0.0,
int_pad_value: int = -32768,
not_sequence: Collection[str] = (),
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
"""Concatenate ndarray-list to an array and convert to torch.Tensor."""
uttids = [u for u, _ in data]
data = [d for _, d in data]
assert all(set(data[0]) == set(d) for d in data), "dict-keys mismatching"
assert all(
not k.endswith("_lengths") for k in data[0]
), f"*_lengths is reserved: {list(data[0])}"
output = {}
for key in data[0]:
if data[0][key].dtype.kind == "i":
pad_value = int_pad_value
else:
pad_value = float_pad_value
array_list = [d[key] for d in data]
tensor_list = [torch.from_numpy(a) for a in array_list]
tensor = pad_list(tensor_list, pad_value)
output[key] = tensor
if key not in not_sequence:
lens = torch.tensor([d[key].shape[0] for d in data], dtype=torch.long)
output[key + "_lengths"] = lens
output = (uttids, output)
return output
class DiarCollateFn:
"""Functor class of common_collate_fn()"""
def __init__(
self,
float_pad_value: Union[float, int] = 0.0,
int_pad_value: int = -32768,
not_sequence: Collection[str] = (),
max_sample_size=None,
):
self.float_pad_value = float_pad_value
self.int_pad_value = int_pad_value
self.not_sequence = set(not_sequence)
self.max_sample_size = max_sample_size
def __repr__(self):
return (
f"{self.__class__}(float_pad_value={self.float_pad_value}, "
f"int_pad_value={self.float_pad_value})"
)
def __call__(
self, data: Collection[Tuple[str, Dict[str, np.ndarray]]]
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
return diar_collate_fn(
data,
float_pad_value=self.float_pad_value,
int_pad_value=self.int_pad_value,
not_sequence=self.not_sequence,
)
def diar_collate_fn(
data: Collection[Tuple[str, Dict[str, np.ndarray]]],
float_pad_value: Union[float, int] = 0.0,
int_pad_value: int = -32768,
not_sequence: Collection[str] = (),
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
"""Concatenate ndarray-list to an array and convert to torch.Tensor."""
uttids = [u for u, _ in data]
data = [d for _, d in data]
assert all(set(data[0]) == set(d) for d in data), "dict-keys mismatching"
assert all(
not k.endswith("_lengths") for k in data[0]
), f"*_lengths is reserved: {list(data[0])}"
output = {}
for key in data[0]:
if data[0][key].dtype.kind == "i":
pad_value = int_pad_value
else:
pad_value = float_pad_value
array_list = [d[key] for d in data]
tensor_list = [torch.from_numpy(a) for a in array_list]
tensor = pad_list_all_dim(tensor_list, pad_value)
output[key] = tensor
if key not in not_sequence:
lens = torch.tensor([d[key].shape[0] for d in data], dtype=torch.long)
output[key + "_lengths"] = lens
output = (uttids, output)
return output
def crop_to_max_size(feature, target_size):
size = len(feature)
diff = size - target_size
if diff <= 0:
return feature
start = np.random.randint(0, diff + 1)
end = size - diff + start
return feature[start:end]
def clipping_collate_fn(
data: Collection[Tuple[str, Dict[str, np.ndarray]]],
max_sample_size=None,
not_sequence: Collection[str] = (),
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
# mainly for pre-training
uttids = [u for u, _ in data]
data = [d for _, d in data]
assert all(set(data[0]) == set(d) for d in data), "dict-keys mismatching"
assert all(
not k.endswith("_lengths") for k in data[0]
), f"*_lengths is reserved: {list(data[0])}"
output = {}
for key in data[0]:
array_list = [d[key] for d in data]
tensor_list = [torch.from_numpy(a) for a in array_list]
sizes = [len(s) for s in tensor_list]
if max_sample_size is None:
target_size = min(sizes)
else:
target_size = min(min(sizes), max_sample_size)
tensor = tensor_list[0].new_zeros(len(tensor_list), target_size, tensor_list[0].shape[1])
for i, (source, size) in enumerate(zip(tensor_list, sizes)):
diff = size - target_size
if diff == 0:
tensor[i] = source
else:
tensor[i] = crop_to_max_size(source, target_size)
output[key] = tensor
if key not in not_sequence:
lens = torch.tensor([source.shape[0] for source in tensor], dtype=torch.long)
output[key + "_lengths"] = lens
output = (uttids, output)
return output