FunASR/funasr/datasets/large_datasets/build_dataloader.py

110 lines
3.8 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
import logging
from pathlib import Path
from typing import Iterable
from typing import List
from typing import Union
import sentencepiece as spm
from torch.utils.data import DataLoader
from funasr.datasets.large_datasets.dataset import Dataset
from funasr.datasets.large_datasets.abs_iter_factory import AbsIterFactory
from funasr.tokenizer.abs_tokenizer import AbsTokenizer
from funasr.register import tables
def read_symbol_table(symbol_table_file):
if isinstance(symbol_table_file, str):
symbol_table = {}
with open(symbol_table_file, "r", encoding="utf8") as fin:
for i, line in enumerate(fin):
char = line.strip()
symbol_table[char] = i
else:
assert isinstance(symbol_table_file, list)
symbol_table = {}
for i, char in enumerate(symbol_table_file):
symbol_table[char] = i
return symbol_table
def load_seg_dict(seg_dict_file):
seg_dict = {}
assert isinstance(seg_dict_file, str)
with open(seg_dict_file, "r", encoding="utf8") as f:
lines = f.readlines()
for line in lines:
s = line.strip().split()
key = s[0]
value = s[1:]
seg_dict[key] = " ".join(value)
return seg_dict
class SentencepiecesTokenizer(AbsTokenizer):
def __init__(self, model: Union[Path, str]):
self.model = str(model)
self.sp = None
def __repr__(self):
return f'{self.__class__.__name__}(model="{self.model}")'
def _build_sentence_piece_processor(self):
if self.sp is None:
self.sp = spm.SentencePieceProcessor()
self.sp.load(self.model)
def text2tokens(self, line: str) -> List[str]:
self._build_sentence_piece_processor()
return self.sp.EncodeAsPieces(line)
def tokens2text(self, tokens: Iterable[str]) -> str:
self._build_sentence_piece_processor()
return self.sp.DecodePieces(list(tokens))
@tables.register("dataset_classes", "LargeDataset")
class LargeDataLoader(AbsIterFactory):
def __init__(self, args, mode="train"):
symbol_table, seg_dict, punc_dict, bpe_tokenizer = None, None, None, None
if hasattr(args, "token_list") and args.token_list is not None:
symbol_table = read_symbol_table(args.token_list)
if hasattr(args, "seg_dict_file") and args.seg_dict_file is not None:
seg_dict = load_seg_dict(args.seg_dict_file)
if hasattr(args, "punc_list") and args.punc_list is not None:
punc_dict = read_symbol_table(args.punc_list)
if hasattr(args, "bpemodel") and args.bpemodel is not None:
bpe_tokenizer = SentencepiecesTokenizer(args.bpemodel)
self.dataset_conf = args.dataset_conf
if "frontend_conf" not in args:
self.frontend_conf = None
else:
self.frontend_conf = args.frontend_conf
self.speed_perturb = args.speed_perturb if hasattr(args, "speed_perturb") else None
logging.info("dataloader config: {}".format(self.dataset_conf))
batch_mode = self.dataset_conf.get("batch_mode", "padding")
data_list = args.train_data_file if mode == "train" else args.valid_data_file
self.dataset = Dataset(
data_list,
symbol_table,
seg_dict,
punc_dict,
bpe_tokenizer,
self.dataset_conf,
self.frontend_conf,
speed_perturb=self.speed_perturb if mode == "train" else None,
mode=mode,
batch_mode=batch_mode,
)
def build_iter(self, epoch, shuffle=True):
self.dataset.set_epoch(epoch)
data_loader = DataLoader(
self.dataset,
batch_size=None,
pin_memory=True,
num_workers=self.dataset_conf.get("num_workers", 8),
)
return data_loader