FunASR/examples/industrial_data_pretraining/monotonic_aligner/README_zh.md

43 lines
2.3 KiB
Markdown
Raw Normal View History

2024-05-18 15:50:56 +08:00
(简体中文|[English](./README.md))
# 语音识别
> **注意**:
> pipeline 支持 [modelscope模型仓库](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) 中的所有模型进行推理和微调。这里我们以典型模型作为示例来演示使用方法。
## 推理
### 快速使用
#### [Paraformer 模型](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)
```python
from funasr import AutoModel
model = AutoModel(model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
res = model(input="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav")
print(res)
```
### API接口说明
#### AutoModel 定义
- `model`: [模型仓库](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) 中的模型名称,或本地磁盘中的模型路径
- `device`: `cuda`(默认),使用 GPU 进行推理。如果为`cpu`,则使用 CPU 进行推理
- `ncpu`: `None` (默认),设置用于 CPU 内部操作并行性的线程数
- `output_dir`: `None` (默认),如果设置,输出结果的输出路径
- `batch_size`: `1` (默认),解码时的批处理大小
#### AutoModel 推理
- `input`: 要解码的输入,可以是:
- wav文件路径, 例如: asr_example.wav
- pcm文件路径, 例如: asr_example.pcm此时需要指定音频采样率fs默认为16000
- 音频字节数流,例如:麦克风的字节数数据
- wav.scpkaldi 样式的 wav 列表 (`wav_id \t wav_path`), 例如:
```text
asr_example1 ./audios/asr_example1.wav
asr_example2 ./audios/asr_example2.wav
```
在这种输入 `wav.scp` 的情况下,必须设置 `output_dir` 以保存输出结果
- 音频采样点,例如:`audio, rate = soundfile.read("asr_example_zh.wav")`, 数据类型为 numpy.ndarray。支持batch输入类型为list
```[audio_sample1, audio_sample2, ..., audio_sampleN]```
- fbank输入支持组batch。shape为[batch, frames, dim]类型为torch.Tensor例如
- `output_dir`: None (默认),如果设置,输出结果的输出路径