503 lines
20 KiB
C
503 lines
20 KiB
C
|
// decoder/biglm-faster-decoder.h
|
||
|
|
||
|
// Copyright 2009-2011 Microsoft Corporation, Gilles Boulianne
|
||
|
|
||
|
// See ../../COPYING for clarification regarding multiple authors
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||
|
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
|
||
|
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
|
||
|
// MERCHANTABLITY OR NON-INFRINGEMENT.
|
||
|
// See the Apache 2 License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#ifndef KALDI_DECODER_BIGLM_FASTER_DECODER_H_
|
||
|
#define KALDI_DECODER_BIGLM_FASTER_DECODER_H_
|
||
|
|
||
|
#include "util/stl-utils.h"
|
||
|
#include "util/hash-list.h"
|
||
|
#include "fst/fstlib.h"
|
||
|
#include "itf/decodable-itf.h"
|
||
|
#include "lat/kaldi-lattice.h" // for CompactLatticeArc
|
||
|
#include "decoder/faster-decoder.h" // for options class
|
||
|
#include "fstext/deterministic-fst.h"
|
||
|
|
||
|
namespace kaldi {
|
||
|
|
||
|
struct BiglmFasterDecoderOptions: public FasterDecoderOptions {
|
||
|
BiglmFasterDecoderOptions() {
|
||
|
min_active = 200;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/** This is as FasterDecoder, but does online composition between
|
||
|
HCLG and the "difference language model", which is a deterministic
|
||
|
FST that represents the difference between the language model you want
|
||
|
and the language model you compiled HCLG with. The class
|
||
|
DeterministicOnDemandFst follows through the epsilons in G for you
|
||
|
(assuming G is a standard backoff language model) and makes it look
|
||
|
like a determinized FST. Actually, in practice,
|
||
|
DeterministicOnDemandFst operates in a mode where it composes two
|
||
|
G's together; one has negated likelihoods and works by removing the
|
||
|
LM probabilities that you made HCLG with, and one is the language model
|
||
|
you want to use.
|
||
|
*/
|
||
|
class BiglmFasterDecoder {
|
||
|
public:
|
||
|
typedef fst::StdArc Arc;
|
||
|
typedef Arc::Label Label;
|
||
|
typedef Arc::StateId StateId;
|
||
|
// A PairId will be constructed as: (StateId in fst) + (StateId in lm_diff_fst) << 32;
|
||
|
typedef uint64 PairId;
|
||
|
typedef Arc::Weight Weight;
|
||
|
|
||
|
// This constructor is the same as for FasterDecoder, except the second
|
||
|
// argument (lm_diff_fst) is new; it's an FST (actually, a
|
||
|
// DeterministicOnDemandFst) that represents the difference in LM scores
|
||
|
// between the LM we want and the LM the decoding-graph "fst" was built with.
|
||
|
// See e.g. gmm-decode-biglm-faster.cc for an example of how this is called.
|
||
|
// Basically, we are using fst o lm_diff_fst (where o is composition)
|
||
|
// as the decoding graph. Instead of having everything indexed by the state in
|
||
|
// "fst", we now index by the pair of states in (fst, lm_diff_fst).
|
||
|
// Whenever we cross a word, we need to propagate the state within
|
||
|
// lm_diff_fst.
|
||
|
BiglmFasterDecoder(const fst::Fst<fst::StdArc> &fst,
|
||
|
const BiglmFasterDecoderOptions &opts,
|
||
|
fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst):
|
||
|
fst_(fst), lm_diff_fst_(lm_diff_fst), opts_(opts), warned_noarc_(false) {
|
||
|
KALDI_ASSERT(opts_.hash_ratio >= 1.0); // less doesn't make much sense.
|
||
|
KALDI_ASSERT(opts_.max_active > 1);
|
||
|
KALDI_ASSERT(fst.Start() != fst::kNoStateId &&
|
||
|
lm_diff_fst->Start() != fst::kNoStateId);
|
||
|
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
|
||
|
}
|
||
|
|
||
|
void SetOptions(const BiglmFasterDecoderOptions &opts) { opts_ = opts; }
|
||
|
|
||
|
~BiglmFasterDecoder() {
|
||
|
ClearToks(toks_.Clear());
|
||
|
}
|
||
|
|
||
|
void Decode(DecodableInterface *decodable) {
|
||
|
// clean up from last time:
|
||
|
ClearToks(toks_.Clear());
|
||
|
PairId start_pair = ConstructPair(fst_.Start(), lm_diff_fst_->Start());
|
||
|
Arc dummy_arc(0, 0, Weight::One(), fst_.Start()); // actually, the last element of
|
||
|
// the Arcs (fst_.Start(), here) is never needed.
|
||
|
toks_.Insert(start_pair, new Token(dummy_arc, NULL));
|
||
|
ProcessNonemitting(std::numeric_limits<float>::max());
|
||
|
for (int32 frame = 0; !decodable->IsLastFrame(frame-1); frame++) {
|
||
|
BaseFloat weight_cutoff = ProcessEmitting(decodable, frame);
|
||
|
ProcessNonemitting(weight_cutoff);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool ReachedFinal() {
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
|
||
|
PairId state_pair = e->key;
|
||
|
StateId state = PairToState(state_pair),
|
||
|
lm_state = PairToLmState(state_pair);
|
||
|
Weight this_weight =
|
||
|
Times(e->val->weight_,
|
||
|
Times(fst_.Final(state), lm_diff_fst_->Final(lm_state)));
|
||
|
if (this_weight != Weight::Zero())
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool GetBestPath(fst::MutableFst<LatticeArc> *fst_out,
|
||
|
bool use_final_probs = true) {
|
||
|
// GetBestPath gets the decoding output. If "use_final_probs" is true
|
||
|
// AND we reached a final state, it limits itself to final states;
|
||
|
// otherwise it gets the most likely token not taking into
|
||
|
// account final-probs. fst_out will be empty (Start() == kNoStateId) if
|
||
|
// nothing was available. It returns true if it got output (thus, fst_out
|
||
|
// will be nonempty).
|
||
|
fst_out->DeleteStates();
|
||
|
Token *best_tok = NULL;
|
||
|
Weight best_final = Weight::Zero(); // set only if is_final == true. The
|
||
|
// final-prob corresponding to the best final token (i.e. the one with best
|
||
|
// weight best_weight, below).
|
||
|
bool is_final = ReachedFinal();
|
||
|
if (!is_final) {
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
|
||
|
if (best_tok == NULL || *best_tok < *(e->val) )
|
||
|
best_tok = e->val;
|
||
|
} else {
|
||
|
Weight best_weight = Weight::Zero();
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
|
||
|
Weight fst_final = fst_.Final(PairToState(e->key)),
|
||
|
lm_final = lm_diff_fst_->Final(PairToLmState(e->key)),
|
||
|
final = Times(fst_final, lm_final);
|
||
|
Weight this_weight = Times(e->val->weight_, final);
|
||
|
if (this_weight != Weight::Zero() &&
|
||
|
this_weight.Value() < best_weight.Value()) {
|
||
|
best_weight = this_weight;
|
||
|
best_final = final;
|
||
|
best_tok = e->val;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (best_tok == NULL) return false; // No output.
|
||
|
|
||
|
std::vector<LatticeArc> arcs_reverse; // arcs in reverse order.
|
||
|
|
||
|
for (Token *tok = best_tok; tok != NULL; tok = tok->prev_) {
|
||
|
BaseFloat tot_cost = tok->weight_.Value() -
|
||
|
(tok->prev_ ? tok->prev_->weight_.Value() : 0.0),
|
||
|
graph_cost = tok->arc_.weight.Value(),
|
||
|
ac_cost = tot_cost - graph_cost;
|
||
|
LatticeArc l_arc(tok->arc_.ilabel,
|
||
|
tok->arc_.olabel,
|
||
|
LatticeWeight(graph_cost, ac_cost),
|
||
|
tok->arc_.nextstate);
|
||
|
arcs_reverse.push_back(l_arc);
|
||
|
}
|
||
|
KALDI_ASSERT(arcs_reverse.back().nextstate == fst_.Start());
|
||
|
arcs_reverse.pop_back(); // that was a "fake" token... gives no info.
|
||
|
|
||
|
StateId cur_state = fst_out->AddState();
|
||
|
fst_out->SetStart(cur_state);
|
||
|
for (ssize_t i = static_cast<ssize_t>(arcs_reverse.size())-1; i >= 0; i--) {
|
||
|
LatticeArc arc = arcs_reverse[i];
|
||
|
arc.nextstate = fst_out->AddState();
|
||
|
fst_out->AddArc(cur_state, arc);
|
||
|
cur_state = arc.nextstate;
|
||
|
}
|
||
|
if (is_final && use_final_probs) {
|
||
|
fst_out->SetFinal(cur_state, LatticeWeight(best_final.Value(), 0.0));
|
||
|
} else {
|
||
|
fst_out->SetFinal(cur_state, LatticeWeight::One());
|
||
|
}
|
||
|
RemoveEpsLocal(fst_out);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
inline PairId ConstructPair(StateId fst_state, StateId lm_state) {
|
||
|
return static_cast<PairId>(fst_state) + (static_cast<PairId>(lm_state) << 32);
|
||
|
}
|
||
|
|
||
|
static inline StateId PairToState(PairId state_pair) {
|
||
|
return static_cast<StateId>(static_cast<uint32>(state_pair));
|
||
|
}
|
||
|
static inline StateId PairToLmState(PairId state_pair) {
|
||
|
return static_cast<StateId>(static_cast<uint32>(state_pair >> 32));
|
||
|
}
|
||
|
|
||
|
class Token {
|
||
|
public:
|
||
|
Arc arc_; // contains only the graph part of the cost,
|
||
|
// including the part in "fst" (== HCLG) plus lm_diff_fst.
|
||
|
// We can work out the acoustic part from difference between
|
||
|
// "weight_" and prev->weight_.
|
||
|
Token *prev_;
|
||
|
int32 ref_count_;
|
||
|
Weight weight_; // weight up to current point.
|
||
|
inline Token(const Arc &arc, Weight &ac_weight, Token *prev):
|
||
|
arc_(arc), prev_(prev), ref_count_(1) {
|
||
|
if (prev) {
|
||
|
prev->ref_count_++;
|
||
|
weight_ = Times(Times(prev->weight_, arc.weight), ac_weight);
|
||
|
} else {
|
||
|
weight_ = Times(arc.weight, ac_weight);
|
||
|
}
|
||
|
}
|
||
|
inline Token(const Arc &arc, Token *prev):
|
||
|
arc_(arc), prev_(prev), ref_count_(1) {
|
||
|
if (prev) {
|
||
|
prev->ref_count_++;
|
||
|
weight_ = Times(prev->weight_, arc.weight);
|
||
|
} else {
|
||
|
weight_ = arc.weight;
|
||
|
}
|
||
|
}
|
||
|
inline bool operator < (const Token &other) {
|
||
|
return weight_.Value() > other.weight_.Value();
|
||
|
// This makes sense for log + tropical semiring.
|
||
|
}
|
||
|
|
||
|
inline ~Token() {
|
||
|
KALDI_ASSERT(ref_count_ == 1);
|
||
|
if (prev_ != NULL) TokenDelete(prev_);
|
||
|
}
|
||
|
inline static void TokenDelete(Token *tok) {
|
||
|
if (tok->ref_count_ == 1) {
|
||
|
delete tok;
|
||
|
} else {
|
||
|
tok->ref_count_--;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
typedef HashList<PairId, Token*>::Elem Elem;
|
||
|
|
||
|
|
||
|
/// Gets the weight cutoff. Also counts the active tokens.
|
||
|
BaseFloat GetCutoff(Elem *list_head, size_t *tok_count,
|
||
|
BaseFloat *adaptive_beam, Elem **best_elem) {
|
||
|
BaseFloat best_weight = 1.0e+10; // positive == high cost == bad.
|
||
|
size_t count = 0;
|
||
|
if (opts_.max_active == std::numeric_limits<int32>::max() &&
|
||
|
opts_.min_active == 0) {
|
||
|
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
|
||
|
BaseFloat w = static_cast<BaseFloat>(e->val->weight_.Value());
|
||
|
if (w < best_weight) {
|
||
|
best_weight = w;
|
||
|
if (best_elem) *best_elem = e;
|
||
|
}
|
||
|
}
|
||
|
if (tok_count != NULL) *tok_count = count;
|
||
|
if (adaptive_beam != NULL) *adaptive_beam = opts_.beam;
|
||
|
return best_weight + opts_.beam;
|
||
|
} else {
|
||
|
tmp_array_.clear();
|
||
|
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
|
||
|
BaseFloat w = e->val->weight_.Value();
|
||
|
tmp_array_.push_back(w);
|
||
|
if (w < best_weight) {
|
||
|
best_weight = w;
|
||
|
if (best_elem) *best_elem = e;
|
||
|
}
|
||
|
}
|
||
|
if (tok_count != NULL) *tok_count = count;
|
||
|
|
||
|
BaseFloat beam_cutoff = best_weight + opts_.beam,
|
||
|
min_active_cutoff = std::numeric_limits<BaseFloat>::infinity(),
|
||
|
max_active_cutoff = std::numeric_limits<BaseFloat>::infinity();
|
||
|
|
||
|
if (tmp_array_.size() > static_cast<size_t>(opts_.max_active)) {
|
||
|
std::nth_element(tmp_array_.begin(),
|
||
|
tmp_array_.begin() + opts_.max_active,
|
||
|
tmp_array_.end());
|
||
|
max_active_cutoff = tmp_array_[opts_.max_active];
|
||
|
}
|
||
|
if (tmp_array_.size() > static_cast<size_t>(opts_.min_active)) {
|
||
|
if (opts_.min_active == 0) min_active_cutoff = best_weight;
|
||
|
else {
|
||
|
std::nth_element(tmp_array_.begin(),
|
||
|
tmp_array_.begin() + opts_.min_active,
|
||
|
tmp_array_.size() > static_cast<size_t>(opts_.max_active) ?
|
||
|
tmp_array_.begin() + opts_.max_active :
|
||
|
tmp_array_.end());
|
||
|
min_active_cutoff = tmp_array_[opts_.min_active];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
|
||
|
if (adaptive_beam)
|
||
|
*adaptive_beam = max_active_cutoff - best_weight + opts_.beam_delta;
|
||
|
return max_active_cutoff;
|
||
|
} else if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
|
||
|
if (adaptive_beam)
|
||
|
*adaptive_beam = min_active_cutoff - best_weight + opts_.beam_delta;
|
||
|
return min_active_cutoff;
|
||
|
} else {
|
||
|
*adaptive_beam = opts_.beam;
|
||
|
return beam_cutoff;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void PossiblyResizeHash(size_t num_toks) {
|
||
|
size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
|
||
|
* opts_.hash_ratio);
|
||
|
if (new_sz > toks_.Size()) {
|
||
|
toks_.SetSize(new_sz);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline StateId PropagateLm(StateId lm_state,
|
||
|
Arc *arc) { // returns new LM state.
|
||
|
if (arc->olabel == 0) {
|
||
|
return lm_state; // no change in LM state if no word crossed.
|
||
|
} else { // Propagate in the LM-diff FST.
|
||
|
Arc lm_arc;
|
||
|
bool ans = lm_diff_fst_->GetArc(lm_state, arc->olabel, &lm_arc);
|
||
|
if (!ans) { // this case is unexpected for statistical LMs.
|
||
|
if (!warned_noarc_) {
|
||
|
warned_noarc_ = true;
|
||
|
KALDI_WARN << "No arc available in LM (unlikely to be correct "
|
||
|
"if a statistical language model); will not warn again";
|
||
|
}
|
||
|
arc->weight = Weight::Zero();
|
||
|
return lm_state; // doesn't really matter what we return here; will
|
||
|
// be pruned.
|
||
|
} else {
|
||
|
arc->weight = Times(arc->weight, lm_arc.weight);
|
||
|
arc->olabel = lm_arc.olabel; // probably will be the same.
|
||
|
return lm_arc.nextstate; // return the new LM state.
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ProcessEmitting returns the likelihood cutoff used.
|
||
|
BaseFloat ProcessEmitting(DecodableInterface *decodable, int frame) {
|
||
|
Elem *last_toks = toks_.Clear();
|
||
|
size_t tok_cnt;
|
||
|
BaseFloat adaptive_beam;
|
||
|
Elem *best_elem = NULL;
|
||
|
BaseFloat weight_cutoff = GetCutoff(last_toks, &tok_cnt,
|
||
|
&adaptive_beam, &best_elem);
|
||
|
PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough.
|
||
|
|
||
|
// This is the cutoff we use after adding in the log-likes (i.e.
|
||
|
// for the next frame). This is a bound on the cutoff we will use
|
||
|
// on the next frame.
|
||
|
BaseFloat next_weight_cutoff = 1.0e+10;
|
||
|
|
||
|
// First process the best token to get a hopefully
|
||
|
// reasonably tight bound on the next cutoff.
|
||
|
if (best_elem) {
|
||
|
PairId state_pair = best_elem->key;
|
||
|
StateId state = PairToState(state_pair),
|
||
|
lm_state = PairToLmState(state_pair);
|
||
|
Token *tok = best_elem->val;
|
||
|
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
Arc arc = aiter.Value();
|
||
|
if (arc.ilabel != 0) { // we'd propagate..
|
||
|
PropagateLm(lm_state, &arc); // may affect "arc.weight".
|
||
|
// We don't need the return value (the new LM state).
|
||
|
BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel),
|
||
|
new_weight = arc.weight.Value() + tok->weight_.Value() + ac_cost;
|
||
|
if (new_weight + adaptive_beam < next_weight_cutoff)
|
||
|
next_weight_cutoff = new_weight + adaptive_beam;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// the tokens are now owned here, in last_toks, and the hash is empty.
|
||
|
// 'owned' is a complex thing here; the point is we need to call toks_.Delete(e)
|
||
|
// on each elem 'e' to let toks_ know we're done with them.
|
||
|
for (Elem *e = last_toks, *e_tail; e != NULL; e = e_tail) { // loop this way
|
||
|
// because we delete "e" as we go.
|
||
|
PairId state_pair = e->key;
|
||
|
StateId state = PairToState(state_pair),
|
||
|
lm_state = PairToLmState(state_pair);
|
||
|
Token *tok = e->val;
|
||
|
if (tok->weight_.Value() < weight_cutoff) { // not pruned.
|
||
|
KALDI_ASSERT(state == tok->arc_.nextstate);
|
||
|
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
Arc arc = aiter.Value();
|
||
|
if (arc.ilabel != 0) { // propagate.
|
||
|
StateId next_lm_state = PropagateLm(lm_state, &arc);
|
||
|
Weight ac_weight(-decodable->LogLikelihood(frame, arc.ilabel));
|
||
|
BaseFloat new_weight = arc.weight.Value() + tok->weight_.Value()
|
||
|
+ ac_weight.Value();
|
||
|
if (new_weight < next_weight_cutoff) { // not pruned..
|
||
|
PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
|
||
|
Token *new_tok = new Token(arc, ac_weight, tok);
|
||
|
Elem *e_found = toks_.Insert(next_pair, new_tok);
|
||
|
if (new_weight + adaptive_beam < next_weight_cutoff)
|
||
|
next_weight_cutoff = new_weight + adaptive_beam;
|
||
|
if (e_found->val != new_tok) {
|
||
|
if (*(e_found->val) < *new_tok) {
|
||
|
Token::TokenDelete(e_found->val);
|
||
|
e_found->val = new_tok;
|
||
|
} else {
|
||
|
Token::TokenDelete(new_tok);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
e_tail = e->tail;
|
||
|
Token::TokenDelete(e->val);
|
||
|
toks_.Delete(e);
|
||
|
}
|
||
|
return next_weight_cutoff;
|
||
|
}
|
||
|
|
||
|
// TODO: first time we go through this, could avoid using the queue.
|
||
|
void ProcessNonemitting(BaseFloat cutoff) {
|
||
|
// Processes nonemitting arcs for one frame.
|
||
|
KALDI_ASSERT(queue_.empty());
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
|
||
|
queue_.push_back(e);
|
||
|
while (!queue_.empty()) {
|
||
|
const Elem *e = queue_.back();
|
||
|
queue_.pop_back();
|
||
|
PairId state_pair = e->key;
|
||
|
Token *tok = e->val; // would segfault if state not
|
||
|
// in toks_ but this can't happen.
|
||
|
if (tok->weight_.Value() > cutoff) { // Don't bother processing successors.
|
||
|
continue;
|
||
|
}
|
||
|
KALDI_ASSERT(tok != NULL);
|
||
|
StateId state = PairToState(state_pair),
|
||
|
lm_state = PairToLmState(state_pair);
|
||
|
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
const Arc &arc_ref = aiter.Value();
|
||
|
if (arc_ref.ilabel == 0) { // propagate nonemitting only...
|
||
|
Arc arc(arc_ref);
|
||
|
StateId next_lm_state = PropagateLm(lm_state, &arc);
|
||
|
PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
|
||
|
Token *new_tok = new Token(arc, tok);
|
||
|
if (new_tok->weight_.Value() > cutoff) { // prune
|
||
|
Token::TokenDelete(new_tok);
|
||
|
} else {
|
||
|
Elem *e_found = toks_.Insert(next_pair, new_tok);
|
||
|
if (e_found->val == new_tok) {
|
||
|
queue_.push_back(e_found);
|
||
|
} else {
|
||
|
if ( *(e_found->val) < *new_tok ) {
|
||
|
Token::TokenDelete(e_found->val);
|
||
|
e_found->val = new_tok;
|
||
|
queue_.push_back(e_found);
|
||
|
} else {
|
||
|
Token::TokenDelete(new_tok);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// HashList defined in ../util/hash-list.h. It actually allows us to maintain
|
||
|
// more than one list (e.g. for current and previous frames), but only one of
|
||
|
// them at a time can be indexed by PairId.
|
||
|
HashList<PairId, Token*> toks_;
|
||
|
const fst::Fst<fst::StdArc> &fst_;
|
||
|
fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst_;
|
||
|
BiglmFasterDecoderOptions opts_;
|
||
|
bool warned_noarc_;
|
||
|
std::vector<const Elem* > queue_; // temp variable used in ProcessNonemitting,
|
||
|
std::vector<BaseFloat> tmp_array_; // used in GetCutoff.
|
||
|
// make it class member to avoid internal new/delete.
|
||
|
|
||
|
// It might seem unclear why we call ClearToks(toks_.Clear()).
|
||
|
// There are two separate cleanup tasks we need to do at when we start a new file.
|
||
|
// one is to delete the Token objects in the list; the other is to delete
|
||
|
// the Elem objects. toks_.Clear() just clears them from the hash and gives ownership
|
||
|
// to the caller, who then has to call toks_.Delete(e) for each one. It was designed
|
||
|
// this way for convenience in propagating tokens from one frame to the next.
|
||
|
void ClearToks(Elem *list) {
|
||
|
for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
|
||
|
Token::TokenDelete(e->val);
|
||
|
e_tail = e->tail;
|
||
|
toks_.Delete(e);
|
||
|
}
|
||
|
}
|
||
|
KALDI_DISALLOW_COPY_AND_ASSIGN(BiglmFasterDecoder);
|
||
|
};
|
||
|
|
||
|
|
||
|
} // end namespace kaldi.
|
||
|
|
||
|
|
||
|
#endif
|