198 lines
6.3 KiB
Python
198 lines
6.3 KiB
Python
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
|
""" Some implementations are adapted from https://github.com/yuyq96/D-TDNN
|
||
|
"""
|
||
|
|
||
|
import io
|
||
|
from typing import Union
|
||
|
|
||
|
import librosa as sf
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import torchaudio.compliance.kaldi as Kaldi
|
||
|
from torch import nn
|
||
|
|
||
|
from funasr.utils.modelscope_file import File
|
||
|
|
||
|
|
||
|
def check_audio_list(audio: list):
|
||
|
audio_dur = 0
|
||
|
for i in range(len(audio)):
|
||
|
seg = audio[i]
|
||
|
assert seg[1] >= seg[0], "modelscope error: Wrong time stamps."
|
||
|
assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type."
|
||
|
assert (
|
||
|
int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0]
|
||
|
), "modelscope error: audio data in list is inconsistent with time length."
|
||
|
if i > 0:
|
||
|
assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps."
|
||
|
audio_dur += seg[1] - seg[0]
|
||
|
return audio_dur
|
||
|
# assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.'
|
||
|
|
||
|
|
||
|
def sv_preprocess(inputs: Union[np.ndarray, list]):
|
||
|
output = []
|
||
|
for i in range(len(inputs)):
|
||
|
if isinstance(inputs[i], str):
|
||
|
file_bytes = File.read(inputs[i])
|
||
|
data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32")
|
||
|
if len(data.shape) == 2:
|
||
|
data = data[:, 0]
|
||
|
data = torch.from_numpy(data).unsqueeze(0)
|
||
|
data = data.squeeze(0)
|
||
|
elif isinstance(inputs[i], np.ndarray):
|
||
|
assert len(inputs[i].shape) == 1, "modelscope error: Input array should be [N, T]"
|
||
|
data = inputs[i]
|
||
|
if data.dtype in ["int16", "int32", "int64"]:
|
||
|
data = (data / (1 << 15)).astype("float32")
|
||
|
else:
|
||
|
data = data.astype("float32")
|
||
|
data = torch.from_numpy(data)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"modelscope error: The input type is restricted to audio address and nump array."
|
||
|
)
|
||
|
output.append(data)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def sv_chunk(vad_segments: list, fs=16000) -> list:
|
||
|
config = {
|
||
|
"seg_dur": 1.5,
|
||
|
"seg_shift": 0.75,
|
||
|
}
|
||
|
|
||
|
def seg_chunk(seg_data):
|
||
|
seg_st = seg_data[0]
|
||
|
data = seg_data[2]
|
||
|
chunk_len = int(config["seg_dur"] * fs)
|
||
|
chunk_shift = int(config["seg_shift"] * fs)
|
||
|
last_chunk_ed = 0
|
||
|
seg_res = []
|
||
|
for chunk_st in range(0, data.shape[0], chunk_shift):
|
||
|
chunk_ed = min(chunk_st + chunk_len, data.shape[0])
|
||
|
if chunk_ed <= last_chunk_ed:
|
||
|
break
|
||
|
last_chunk_ed = chunk_ed
|
||
|
chunk_st = max(0, chunk_ed - chunk_len)
|
||
|
chunk_data = data[chunk_st:chunk_ed]
|
||
|
if chunk_data.shape[0] < chunk_len:
|
||
|
chunk_data = np.pad(chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant")
|
||
|
seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data])
|
||
|
return seg_res
|
||
|
|
||
|
segs = []
|
||
|
for i, s in enumerate(vad_segments):
|
||
|
segs.extend(seg_chunk(s))
|
||
|
|
||
|
return segs
|
||
|
|
||
|
|
||
|
def extract_feature(audio):
|
||
|
features = []
|
||
|
for au in audio:
|
||
|
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80)
|
||
|
feature = feature - feature.mean(dim=0, keepdim=True)
|
||
|
features.append(feature.unsqueeze(0))
|
||
|
features = torch.cat(features)
|
||
|
return features
|
||
|
|
||
|
|
||
|
def postprocess(
|
||
|
segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray
|
||
|
) -> list:
|
||
|
assert len(segments) == len(labels)
|
||
|
labels = correct_labels(labels)
|
||
|
distribute_res = []
|
||
|
for i in range(len(segments)):
|
||
|
distribute_res.append([segments[i][0], segments[i][1], labels[i]])
|
||
|
# merge the same speakers chronologically
|
||
|
distribute_res = merge_seque(distribute_res)
|
||
|
|
||
|
# accquire speaker center
|
||
|
spk_embs = []
|
||
|
for i in range(labels.max() + 1):
|
||
|
spk_emb = embeddings[labels == i].mean(0)
|
||
|
spk_embs.append(spk_emb)
|
||
|
spk_embs = np.stack(spk_embs)
|
||
|
|
||
|
def is_overlapped(t1, t2):
|
||
|
if t1 > t2 + 1e-4:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
# distribute the overlap region
|
||
|
for i in range(1, len(distribute_res)):
|
||
|
if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]):
|
||
|
p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2
|
||
|
distribute_res[i][0] = p
|
||
|
distribute_res[i - 1][1] = p
|
||
|
|
||
|
# smooth the result
|
||
|
distribute_res = smooth(distribute_res)
|
||
|
|
||
|
return distribute_res
|
||
|
|
||
|
|
||
|
def correct_labels(labels):
|
||
|
labels_id = 0
|
||
|
id2id = {}
|
||
|
new_labels = []
|
||
|
for i in labels:
|
||
|
if i not in id2id:
|
||
|
id2id[i] = labels_id
|
||
|
labels_id += 1
|
||
|
new_labels.append(id2id[i])
|
||
|
return np.array(new_labels)
|
||
|
|
||
|
|
||
|
def merge_seque(distribute_res):
|
||
|
res = [distribute_res[0]]
|
||
|
for i in range(1, len(distribute_res)):
|
||
|
if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]:
|
||
|
res.append(distribute_res[i])
|
||
|
else:
|
||
|
res[-1][1] = distribute_res[i][1]
|
||
|
return res
|
||
|
|
||
|
|
||
|
def smooth(res, mindur=1):
|
||
|
# short segments are assigned to nearest speakers.
|
||
|
for i in range(len(res)):
|
||
|
res[i][0] = round(res[i][0], 2)
|
||
|
res[i][1] = round(res[i][1], 2)
|
||
|
if res[i][1] - res[i][0] < mindur:
|
||
|
if i == 0:
|
||
|
res[i][2] = res[i + 1][2]
|
||
|
elif i == len(res) - 1:
|
||
|
res[i][2] = res[i - 1][2]
|
||
|
elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]:
|
||
|
res[i][2] = res[i - 1][2]
|
||
|
else:
|
||
|
res[i][2] = res[i + 1][2]
|
||
|
# merge the speakers
|
||
|
res = merge_seque(res)
|
||
|
|
||
|
return res
|
||
|
|
||
|
|
||
|
def distribute_spk(sentence_list, sd_time_list):
|
||
|
sd_sentence_list = []
|
||
|
for d in sentence_list:
|
||
|
sentence_start = d["ts_list"][0][0]
|
||
|
sentence_end = d["ts_list"][-1][1]
|
||
|
sentence_spk = 0
|
||
|
max_overlap = 0
|
||
|
for sd_time in sd_time_list:
|
||
|
spk_st, spk_ed, spk = sd_time
|
||
|
spk_st = spk_st * 1000
|
||
|
spk_ed = spk_ed * 1000
|
||
|
overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
|
||
|
if overlap > max_overlap:
|
||
|
max_overlap = overlap
|
||
|
sentence_spk = spk
|
||
|
d["spk"] = sentence_spk
|
||
|
sd_sentence_list.append(d)
|
||
|
return sd_sentence_list
|