218 lines
7.9 KiB
Python
218 lines
7.9 KiB
Python
|
import os
|
||
|
import torch
|
||
|
import json
|
||
|
import torch.distributed as dist
|
||
|
import numpy as np
|
||
|
import kaldiio
|
||
|
import librosa
|
||
|
import torchaudio
|
||
|
import time
|
||
|
import logging
|
||
|
from torch.nn.utils.rnn import pad_sequence
|
||
|
|
||
|
try:
|
||
|
from funasr.download.file import download_from_url
|
||
|
except:
|
||
|
print("urllib is not installed, if you infer from url, please install it first.")
|
||
|
import pdb
|
||
|
import subprocess
|
||
|
from subprocess import CalledProcessError, run
|
||
|
|
||
|
|
||
|
def is_ffmpeg_installed():
|
||
|
try:
|
||
|
output = subprocess.check_output(["ffmpeg", "-version"], stderr=subprocess.STDOUT)
|
||
|
return "ffmpeg version" in output.decode("utf-8")
|
||
|
except (subprocess.CalledProcessError, FileNotFoundError):
|
||
|
return False
|
||
|
|
||
|
|
||
|
use_ffmpeg = False
|
||
|
if is_ffmpeg_installed():
|
||
|
use_ffmpeg = True
|
||
|
else:
|
||
|
print(
|
||
|
"Notice: ffmpeg is not installed. torchaudio is used to load audio\n"
|
||
|
"If you want to use ffmpeg backend to load audio, please install it by:"
|
||
|
"\n\tsudo apt install ffmpeg # ubuntu"
|
||
|
"\n\t# brew install ffmpeg # mac"
|
||
|
)
|
||
|
|
||
|
|
||
|
def load_audio_text_image_video(
|
||
|
data_or_path_or_list,
|
||
|
fs: int = 16000,
|
||
|
audio_fs: int = 16000,
|
||
|
data_type="sound",
|
||
|
tokenizer=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if isinstance(data_or_path_or_list, (list, tuple)):
|
||
|
if data_type is not None and isinstance(data_type, (list, tuple)):
|
||
|
data_types = [data_type] * len(data_or_path_or_list)
|
||
|
data_or_path_or_list_ret = [[] for d in data_type]
|
||
|
for i, (data_type_i, data_or_path_or_list_i) in enumerate(
|
||
|
zip(data_types, data_or_path_or_list)
|
||
|
):
|
||
|
for j, (data_type_j, data_or_path_or_list_j) in enumerate(
|
||
|
zip(data_type_i, data_or_path_or_list_i)
|
||
|
):
|
||
|
data_or_path_or_list_j = load_audio_text_image_video(
|
||
|
data_or_path_or_list_j,
|
||
|
fs=fs,
|
||
|
audio_fs=audio_fs,
|
||
|
data_type=data_type_j,
|
||
|
tokenizer=tokenizer,
|
||
|
**kwargs,
|
||
|
)
|
||
|
data_or_path_or_list_ret[j].append(data_or_path_or_list_j)
|
||
|
|
||
|
return data_or_path_or_list_ret
|
||
|
else:
|
||
|
return [
|
||
|
load_audio_text_image_video(
|
||
|
audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs
|
||
|
)
|
||
|
for audio in data_or_path_or_list
|
||
|
]
|
||
|
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith(
|
||
|
"http"
|
||
|
): # download url to local file
|
||
|
data_or_path_or_list = download_from_url(data_or_path_or_list)
|
||
|
|
||
|
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
|
||
|
if data_type is None or data_type == "sound":
|
||
|
# if use_ffmpeg:
|
||
|
# data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
|
||
|
# data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
|
||
|
# else:
|
||
|
# data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
||
|
# if kwargs.get("reduce_channels", True):
|
||
|
# data_or_path_or_list = data_or_path_or_list.mean(0)
|
||
|
try:
|
||
|
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
||
|
if kwargs.get("reduce_channels", True):
|
||
|
data_or_path_or_list = data_or_path_or_list.mean(0)
|
||
|
except:
|
||
|
data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
|
||
|
data_or_path_or_list = torch.from_numpy(
|
||
|
data_or_path_or_list
|
||
|
).squeeze() # [n_samples,]
|
||
|
elif data_type == "text" and tokenizer is not None:
|
||
|
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
||
|
elif data_type == "image": # undo
|
||
|
pass
|
||
|
elif data_type == "video": # undo
|
||
|
pass
|
||
|
|
||
|
# if data_in is a file or url, set is_final=True
|
||
|
if "cache" in kwargs:
|
||
|
kwargs["cache"]["is_final"] = True
|
||
|
kwargs["cache"]["is_streaming_input"] = False
|
||
|
elif isinstance(data_or_path_or_list, str) and data_type == "text" and tokenizer is not None:
|
||
|
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
||
|
elif isinstance(data_or_path_or_list, np.ndarray): # audio sample point
|
||
|
data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
|
||
|
elif isinstance(data_or_path_or_list, str) and data_type == "kaldi_ark":
|
||
|
data_mat = kaldiio.load_mat(data_or_path_or_list)
|
||
|
if isinstance(data_mat, tuple):
|
||
|
audio_fs, mat = data_mat
|
||
|
else:
|
||
|
mat = data_mat
|
||
|
if mat.dtype == "int16" or mat.dtype == "int32":
|
||
|
mat = mat.astype(np.float64)
|
||
|
mat = mat / 32768
|
||
|
if mat.ndim == 2:
|
||
|
mat = mat[:, 0]
|
||
|
data_or_path_or_list = mat
|
||
|
else:
|
||
|
pass
|
||
|
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
|
||
|
|
||
|
if audio_fs != fs and data_type != "text":
|
||
|
resampler = torchaudio.transforms.Resample(audio_fs, fs)
|
||
|
data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :]
|
||
|
return data_or_path_or_list
|
||
|
|
||
|
|
||
|
def load_bytes(input):
|
||
|
middle_data = np.frombuffer(input, dtype=np.int16)
|
||
|
middle_data = np.asarray(middle_data)
|
||
|
if middle_data.dtype.kind not in "iu":
|
||
|
raise TypeError("'middle_data' must be an array of integers")
|
||
|
dtype = np.dtype("float32")
|
||
|
if dtype.kind != "f":
|
||
|
raise TypeError("'dtype' must be a floating point type")
|
||
|
|
||
|
i = np.iinfo(middle_data.dtype)
|
||
|
abs_max = 2 ** (i.bits - 1)
|
||
|
offset = i.min + abs_max
|
||
|
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
|
||
|
return array
|
||
|
|
||
|
|
||
|
def extract_fbank(data, data_len=None, data_type: str = "sound", frontend=None, **kwargs):
|
||
|
if isinstance(data, np.ndarray):
|
||
|
data = torch.from_numpy(data)
|
||
|
if len(data.shape) < 2:
|
||
|
data = data[None, :] # data: [batch, N]
|
||
|
data_len = [data.shape[1]] if data_len is None else data_len
|
||
|
elif isinstance(data, torch.Tensor):
|
||
|
if len(data.shape) < 2:
|
||
|
data = data[None, :] # data: [batch, N]
|
||
|
data_len = [data.shape[1]] if data_len is None else data_len
|
||
|
elif isinstance(data, (list, tuple)):
|
||
|
data_list, data_len = [], []
|
||
|
for data_i in data:
|
||
|
if isinstance(data_i, np.ndarray):
|
||
|
data_i = torch.from_numpy(data_i)
|
||
|
data_list.append(data_i)
|
||
|
data_len.append(data_i.shape[0])
|
||
|
data = pad_sequence(data_list, batch_first=True) # data: [batch, N]
|
||
|
|
||
|
data, data_len = frontend(data, data_len, **kwargs)
|
||
|
|
||
|
if isinstance(data_len, (list, tuple)):
|
||
|
data_len = torch.tensor([data_len])
|
||
|
return data.to(torch.float32), data_len.to(torch.int32)
|
||
|
|
||
|
|
||
|
def _load_audio_ffmpeg(file: str, sr: int = 16000):
|
||
|
"""
|
||
|
Open an audio file and read as mono waveform, resampling as necessary
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
file: str
|
||
|
The audio file to open
|
||
|
|
||
|
sr: int
|
||
|
The sample rate to resample the audio if necessary
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A NumPy array containing the audio waveform, in float32 dtype.
|
||
|
"""
|
||
|
|
||
|
# This launches a subprocess to decode audio while down-mixing
|
||
|
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||
|
# fmt: off
|
||
|
cmd = [
|
||
|
"ffmpeg",
|
||
|
"-nostdin",
|
||
|
"-threads", "0",
|
||
|
"-i", file,
|
||
|
"-f", "s16le",
|
||
|
"-ac", "1",
|
||
|
"-acodec", "pcm_s16le",
|
||
|
"-ar", str(sr),
|
||
|
"-"
|
||
|
]
|
||
|
# fmt: on
|
||
|
try:
|
||
|
out = run(cmd, capture_output=True, check=True).stdout
|
||
|
except CalledProcessError as e:
|
||
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||
|
|
||
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|