89 lines
2.7 KiB
Python
89 lines
2.7 KiB
Python
|
"""VGG2L module definition for custom encoder."""
|
||
|
|
||
|
from typing import Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
class VGG2L(torch.nn.Module):
|
||
|
"""VGG2L module for custom encoder.
|
||
|
|
||
|
Args:
|
||
|
idim: Input dimension.
|
||
|
odim: Output dimension.
|
||
|
pos_enc: Positional encoding class.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, idim: int, odim: int, pos_enc: torch.nn.Module = None):
|
||
|
"""Construct a VGG2L object."""
|
||
|
super().__init__()
|
||
|
|
||
|
self.vgg2l = torch.nn.Sequential(
|
||
|
torch.nn.Conv2d(1, 64, 3, stride=1, padding=1),
|
||
|
torch.nn.ReLU(),
|
||
|
torch.nn.Conv2d(64, 64, 3, stride=1, padding=1),
|
||
|
torch.nn.ReLU(),
|
||
|
torch.nn.MaxPool2d((3, 2)),
|
||
|
torch.nn.Conv2d(64, 128, 3, stride=1, padding=1),
|
||
|
torch.nn.ReLU(),
|
||
|
torch.nn.Conv2d(128, 128, 3, stride=1, padding=1),
|
||
|
torch.nn.ReLU(),
|
||
|
torch.nn.MaxPool2d((2, 2)),
|
||
|
)
|
||
|
|
||
|
if pos_enc is not None:
|
||
|
self.output = torch.nn.Sequential(
|
||
|
torch.nn.Linear(128 * ((idim // 2) // 2), odim), pos_enc
|
||
|
)
|
||
|
else:
|
||
|
self.output = torch.nn.Linear(128 * ((idim // 2) // 2), odim)
|
||
|
|
||
|
def forward(self, feats: torch.Tensor, feats_mask: torch.Tensor) -> Union[
|
||
|
Tuple[torch.Tensor, torch.Tensor],
|
||
|
Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor],
|
||
|
]:
|
||
|
"""Forward VGG2L bottleneck.
|
||
|
|
||
|
Args:
|
||
|
feats: Feature sequences. (B, F, D_feats)
|
||
|
feats_mask: Mask of feature sequences. (B, 1, F)
|
||
|
|
||
|
Returns:
|
||
|
vgg_output: VGG output sequences.
|
||
|
(B, sub(F), D_out) or ((B, sub(F), D_out), (B, sub(F), D_att))
|
||
|
vgg_mask: Mask of VGG output sequences. (B, 1, sub(F))
|
||
|
|
||
|
"""
|
||
|
feats = feats.unsqueeze(1)
|
||
|
vgg_output = self.vgg2l(feats)
|
||
|
|
||
|
b, c, t, f = vgg_output.size()
|
||
|
|
||
|
vgg_output = self.output(vgg_output.transpose(1, 2).contiguous().view(b, t, c * f))
|
||
|
|
||
|
if feats_mask is not None:
|
||
|
vgg_mask = self.create_new_mask(feats_mask)
|
||
|
else:
|
||
|
vgg_mask = feats_mask
|
||
|
|
||
|
return vgg_output, vgg_mask
|
||
|
|
||
|
def create_new_mask(self, feats_mask: torch.Tensor) -> torch.Tensor:
|
||
|
"""Create a subsampled mask of feature sequences.
|
||
|
|
||
|
Args:
|
||
|
feats_mask: Mask of feature sequences. (B, 1, F)
|
||
|
|
||
|
Returns:
|
||
|
vgg_mask: Mask of VGG2L output sequences. (B, 1, sub(F))
|
||
|
|
||
|
"""
|
||
|
vgg1_t_len = feats_mask.size(2) - (feats_mask.size(2) % 3)
|
||
|
vgg_mask = feats_mask[:, :, :vgg1_t_len][:, :, ::3]
|
||
|
|
||
|
vgg2_t_len = vgg_mask.size(2) - (vgg_mask.size(2) % 2)
|
||
|
vgg_mask = vgg_mask[:, :, :vgg2_t_len][:, :, ::2]
|
||
|
|
||
|
return vgg_mask
|