65 lines
2.0 KiB
Python
65 lines
2.0 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||
|
# MIT License (https://opensource.org/licenses/MIT)
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from funasr.register import tables
|
||
|
from funasr.models.transformer.utils.nets_utils import get_activation
|
||
|
|
||
|
|
||
|
@tables.register("joint_network_classes", "joint_network")
|
||
|
class JointNetwork(torch.nn.Module):
|
||
|
"""Transducer joint network module.
|
||
|
|
||
|
Args:
|
||
|
output_size: Output size.
|
||
|
encoder_size: Encoder output size.
|
||
|
decoder_size: Decoder output size..
|
||
|
joint_space_size: Joint space size.
|
||
|
joint_act_type: Type of activation for joint network.
|
||
|
**activation_parameters: Parameters for the activation function.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
output_size: int,
|
||
|
encoder_size: int,
|
||
|
decoder_size: int,
|
||
|
joint_space_size: int = 256,
|
||
|
joint_activation_type: str = "tanh",
|
||
|
) -> None:
|
||
|
"""Construct a JointNetwork object."""
|
||
|
super().__init__()
|
||
|
|
||
|
self.lin_enc = torch.nn.Linear(encoder_size, joint_space_size)
|
||
|
self.lin_dec = torch.nn.Linear(decoder_size, joint_space_size, bias=False)
|
||
|
|
||
|
self.lin_out = torch.nn.Linear(joint_space_size, output_size)
|
||
|
|
||
|
self.joint_activation = get_activation(joint_activation_type)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
enc_out: torch.Tensor,
|
||
|
dec_out: torch.Tensor,
|
||
|
project_input: bool = True,
|
||
|
) -> torch.Tensor:
|
||
|
"""Joint computation of encoder and decoder hidden state sequences.
|
||
|
|
||
|
Args:
|
||
|
enc_out: Expanded encoder output state sequences (B, T, 1, D_enc)
|
||
|
dec_out: Expanded decoder output state sequences (B, 1, U, D_dec)
|
||
|
|
||
|
Returns:
|
||
|
joint_out: Joint output state sequences. (B, T, U, D_out)
|
||
|
|
||
|
"""
|
||
|
if project_input:
|
||
|
joint_out = self.joint_activation(self.lin_enc(enc_out) + self.lin_dec(dec_out))
|
||
|
else:
|
||
|
joint_out = self.joint_activation(enc_out + dec_out)
|
||
|
return self.lin_out(joint_out)
|