181 lines
6.0 KiB
Python
181 lines
6.0 KiB
Python
|
from typing import List
|
||
|
from typing import Optional
|
||
|
from typing import Sequence
|
||
|
from typing import Tuple
|
||
|
from typing import Union
|
||
|
import logging
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch.nn import functional as F
|
||
|
import numpy as np
|
||
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||
|
from funasr.models.transformer.layer_norm import LayerNorm
|
||
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
||
|
import math
|
||
|
from funasr.models.transformer.utils.repeat import repeat
|
||
|
from funasr.models.transformer.utils.multi_layer_conv import FsmnFeedForward
|
||
|
|
||
|
|
||
|
class FsmnBlock(torch.nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
n_feat,
|
||
|
dropout_rate,
|
||
|
kernel_size,
|
||
|
fsmn_shift=0,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.dropout = nn.Dropout(p=dropout_rate)
|
||
|
self.fsmn_block = nn.Conv1d(
|
||
|
n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False
|
||
|
)
|
||
|
# padding
|
||
|
left_padding = (kernel_size - 1) // 2
|
||
|
if fsmn_shift > 0:
|
||
|
left_padding = left_padding + fsmn_shift
|
||
|
right_padding = kernel_size - 1 - left_padding
|
||
|
self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0)
|
||
|
|
||
|
def forward(self, inputs, mask, mask_shfit_chunk=None):
|
||
|
b, t, d = inputs.size()
|
||
|
if mask is not None:
|
||
|
mask = torch.reshape(mask, (b, -1, 1))
|
||
|
if mask_shfit_chunk is not None:
|
||
|
mask = mask * mask_shfit_chunk
|
||
|
|
||
|
inputs = inputs * mask
|
||
|
x = inputs.transpose(1, 2)
|
||
|
x = self.pad_fn(x)
|
||
|
x = self.fsmn_block(x)
|
||
|
x = x.transpose(1, 2)
|
||
|
x = x + inputs
|
||
|
x = self.dropout(x)
|
||
|
return x * mask
|
||
|
|
||
|
|
||
|
class EncoderLayer(torch.nn.Module):
|
||
|
def __init__(self, in_size, size, feed_forward, fsmn_block, dropout_rate=0.0):
|
||
|
super().__init__()
|
||
|
self.in_size = in_size
|
||
|
self.size = size
|
||
|
self.ffn = feed_forward
|
||
|
self.memory = fsmn_block
|
||
|
self.dropout = nn.Dropout(dropout_rate)
|
||
|
|
||
|
def forward(
|
||
|
self, xs_pad: torch.Tensor, mask: torch.Tensor
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
# xs_pad in Batch, Time, Dim
|
||
|
|
||
|
context = self.ffn(xs_pad)[0]
|
||
|
memory = self.memory(context, mask)
|
||
|
|
||
|
memory = self.dropout(memory)
|
||
|
if self.in_size == self.size:
|
||
|
return memory + xs_pad, mask
|
||
|
|
||
|
return memory, mask
|
||
|
|
||
|
|
||
|
class FsmnEncoder(AbsEncoder):
|
||
|
"""Encoder using Fsmn"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_units,
|
||
|
filter_size,
|
||
|
fsmn_num_layers,
|
||
|
dnn_num_layers,
|
||
|
num_memory_units=512,
|
||
|
ffn_inner_dim=2048,
|
||
|
dropout_rate=0.0,
|
||
|
shift=0,
|
||
|
position_encoder=None,
|
||
|
sample_rate=1,
|
||
|
out_units=None,
|
||
|
tf2torch_tensor_name_prefix_torch="post_net",
|
||
|
tf2torch_tensor_name_prefix_tf="EAND/post_net",
|
||
|
):
|
||
|
"""Initializes the parameters of the encoder.
|
||
|
|
||
|
Args:
|
||
|
filter_size: the total order of memory block
|
||
|
fsmn_num_layers: The number of fsmn layers.
|
||
|
dnn_num_layers: The number of dnn layers
|
||
|
num_units: The number of memory units.
|
||
|
ffn_inner_dim: The number of units of the inner linear transformation
|
||
|
in the feed forward layer.
|
||
|
dropout_rate: The probability to drop units from the outputs.
|
||
|
shift: left padding, to control delay
|
||
|
position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to
|
||
|
apply on inputs or ``None``.
|
||
|
"""
|
||
|
super(FsmnEncoder, self).__init__()
|
||
|
self.in_units = in_units
|
||
|
self.filter_size = filter_size
|
||
|
self.fsmn_num_layers = fsmn_num_layers
|
||
|
self.dnn_num_layers = dnn_num_layers
|
||
|
self.num_memory_units = num_memory_units
|
||
|
self.ffn_inner_dim = ffn_inner_dim
|
||
|
self.dropout_rate = dropout_rate
|
||
|
self.shift = shift
|
||
|
if not isinstance(shift, list):
|
||
|
self.shift = [shift for _ in range(self.fsmn_num_layers)]
|
||
|
self.sample_rate = sample_rate
|
||
|
if not isinstance(sample_rate, list):
|
||
|
self.sample_rate = [sample_rate for _ in range(self.fsmn_num_layers)]
|
||
|
self.position_encoder = position_encoder
|
||
|
self.dropout = nn.Dropout(dropout_rate)
|
||
|
self.out_units = out_units
|
||
|
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
|
||
|
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
|
||
|
|
||
|
self.fsmn_layers = repeat(
|
||
|
self.fsmn_num_layers,
|
||
|
lambda lnum: EncoderLayer(
|
||
|
in_units if lnum == 0 else num_memory_units,
|
||
|
num_memory_units,
|
||
|
FsmnFeedForward(
|
||
|
in_units if lnum == 0 else num_memory_units,
|
||
|
ffn_inner_dim,
|
||
|
num_memory_units,
|
||
|
1,
|
||
|
dropout_rate,
|
||
|
),
|
||
|
FsmnBlock(num_memory_units, dropout_rate, filter_size, self.shift[lnum]),
|
||
|
),
|
||
|
)
|
||
|
|
||
|
self.dnn_layers = repeat(
|
||
|
dnn_num_layers,
|
||
|
lambda lnum: FsmnFeedForward(
|
||
|
num_memory_units,
|
||
|
ffn_inner_dim,
|
||
|
num_memory_units,
|
||
|
1,
|
||
|
dropout_rate,
|
||
|
),
|
||
|
)
|
||
|
if out_units is not None:
|
||
|
self.conv1d = nn.Conv1d(num_memory_units, out_units, 1, 1)
|
||
|
|
||
|
def output_size(self) -> int:
|
||
|
return self.num_memory_units
|
||
|
|
||
|
def forward(
|
||
|
self, xs_pad: torch.Tensor, ilens: torch.Tensor, prev_states: torch.Tensor = None
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||
|
inputs = xs_pad
|
||
|
if self.position_encoder is not None:
|
||
|
inputs = self.position_encoder(inputs)
|
||
|
|
||
|
inputs = self.dropout(inputs)
|
||
|
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
||
|
inputs = self.fsmn_layers(inputs, masks)[0]
|
||
|
inputs = self.dnn_layers(inputs)[0]
|
||
|
|
||
|
if self.out_units is not None:
|
||
|
inputs = self.conv1d(inputs.transpose(1, 2)).transpose(1, 2)
|
||
|
|
||
|
return inputs, ilens, None
|