FunASR/funasr/models/seaco_paraformer/model.py

629 lines
25 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os
import re
import time
import copy
import torch
import codecs
import logging
import tempfile
import requests
import numpy as np
from typing import Dict, Tuple
from contextlib import contextmanager
from distutils.version import LooseVersion
from funasr.register import tables
from funasr.utils import postprocess_utils
from funasr.models.paraformer.model import Paraformer
from funasr.utils.datadir_writer import DatadirWriter
from funasr.models.paraformer.search import Hypothesis
from funasr.train_utils.device_funcs import force_gatherable
from funasr.models.bicif_paraformer.model import BiCifParaformer
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
@tables.register("model_classes", "SeacoParaformer")
class SeacoParaformer(BiCifParaformer, Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability
https://arxiv.org/abs/2308.03266
"""
def __init__(
self,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.inner_dim = kwargs.get("inner_dim", 256)
self.bias_encoder_type = kwargs.get("bias_encoder_type", "lstm")
bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0)
bias_encoder_bid = kwargs.get("bias_encoder_bid", False)
seaco_lsm_weight = kwargs.get("seaco_lsm_weight", 0.0)
seaco_length_normalized_loss = kwargs.get("seaco_length_normalized_loss", True)
# bias encoder
if self.bias_encoder_type == "lstm":
self.bias_encoder = torch.nn.LSTM(
self.inner_dim,
self.inner_dim,
2,
batch_first=True,
dropout=bias_encoder_dropout_rate,
bidirectional=bias_encoder_bid,
)
if bias_encoder_bid:
self.lstm_proj = torch.nn.Linear(self.inner_dim * 2, self.inner_dim)
else:
self.lstm_proj = None
# self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
elif self.bias_encoder_type == "mean":
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
else:
logging.error("Unsupport bias encoder type: {}".format(self.bias_encoder_type))
# seaco decoder
seaco_decoder = kwargs.get("seaco_decoder", None)
if seaco_decoder is not None:
seaco_decoder_conf = kwargs.get("seaco_decoder_conf")
seaco_decoder_class = tables.decoder_classes.get(seaco_decoder)
self.seaco_decoder = seaco_decoder_class(
vocab_size=self.vocab_size,
encoder_output_size=self.inner_dim,
**seaco_decoder_conf,
)
self.hotword_output_layer = torch.nn.Linear(self.inner_dim, self.vocab_size)
self.criterion_seaco = LabelSmoothingLoss(
size=self.vocab_size,
padding_idx=self.ignore_id,
smoothing=seaco_lsm_weight,
normalize_length=seaco_length_normalized_loss,
)
self.train_decoder = kwargs.get("train_decoder", True)
self.seaco_weight = kwargs.get("seaco_weight", 0.01)
self.NO_BIAS = kwargs.get("NO_BIAS", 8377)
self.predictor_name = kwargs.get("predictor")
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
# Check that batch_size is unified
assert (
speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
hotword_pad = kwargs.get("hotword_pad")
hotword_lengths = kwargs.get("hotword_lengths")
seaco_label_pad = kwargs.get("seaco_label_pad")
if len(hotword_lengths.size()) > 1:
hotword_lengths = hotword_lengths[:, 0]
batch_size = speech.shape[0]
# for data-parallel
text = text[:, : text_lengths.max()]
speech = speech[:, : speech_lengths.max()]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(text, self.sos, self.eos, self.ignore_id)
ys_lengths = text_lengths + self.predictor_bias
stats = dict()
loss_seaco = self._calc_seaco_loss(
encoder_out,
encoder_out_lens,
ys_pad,
ys_lengths,
hotword_pad,
hotword_lengths,
seaco_label_pad,
)
if self.train_decoder:
loss_att, acc_att, _, _, _ = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss = loss_seaco + loss_att * self.seaco_weight
stats["loss_att"] = torch.clone(loss_att.detach())
stats["acc_att"] = acc_att
else:
loss = loss_seaco
stats["loss_seaco"] = torch.clone(loss_seaco.detach())
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = (text_lengths + self.predictor_bias).sum()
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _merge(self, cif_attended, dec_attended):
return cif_attended + dec_attended
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
predictor_outs = self.predictor(
encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id
)
return predictor_outs[:4]
def _calc_seaco_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_lengths: torch.Tensor,
hotword_pad: torch.Tensor,
hotword_lengths: torch.Tensor,
seaco_label_pad: torch.Tensor,
):
# predictor forward
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
pre_acoustic_embeds = self.predictor(
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
)[0]
# decoder forward
decoder_out, _ = self.decoder(
encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_lengths, return_hidden=True
)
selected = self._hotword_representation(hotword_pad, hotword_lengths)
contextual_info = (
selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
)
num_hot_word = contextual_info.shape[1]
_contextual_length = (
torch.Tensor([num_hot_word]).int().repeat(encoder_out.shape[0]).to(encoder_out.device)
)
# dha core
cif_attended, _ = self.seaco_decoder(
contextual_info, _contextual_length, pre_acoustic_embeds, ys_lengths
)
dec_attended, _ = self.seaco_decoder(
contextual_info, _contextual_length, decoder_out, ys_lengths
)
merged = self._merge(cif_attended, dec_attended)
dha_output = self.hotword_output_layer(
merged[:, :-1]
) # remove the last token in loss calculation
loss_att = self.criterion_seaco(dha_output, seaco_label_pad)
return loss_att
def _seaco_decode_with_ASF(
self,
encoder_out,
encoder_out_lens,
sematic_embeds,
ys_pad_lens,
hw_list,
nfilter=50,
seaco_weight=1.0,
):
# decoder forward
decoder_out, decoder_hidden, _ = self.decoder(
encoder_out,
encoder_out_lens,
sematic_embeds,
ys_pad_lens,
return_hidden=True,
return_both=True,
)
decoder_pred = torch.log_softmax(decoder_out, dim=-1)
if hw_list is not None:
hw_lengths = [len(i) for i in hw_list]
hw_list_ = [torch.Tensor(i).long() for i in hw_list]
hw_list_pad = pad_list(hw_list_, 0).to(encoder_out.device)
selected = self._hotword_representation(
hw_list_pad, torch.Tensor(hw_lengths).int().to(encoder_out.device)
)
contextual_info = (
selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
)
num_hot_word = contextual_info.shape[1]
_contextual_length = (
torch.Tensor([num_hot_word])
.int()
.repeat(encoder_out.shape[0])
.to(encoder_out.device)
)
# ASF Core
if nfilter > 0 and nfilter < num_hot_word:
hotword_scores = self.seaco_decoder.forward_asf6(
contextual_info, _contextual_length, decoder_hidden, ys_pad_lens
)
hotword_scores = hotword_scores[0].sum(0).sum(0)
# hotword_scores /= torch.sqrt(torch.tensor(hw_lengths)[:-1].float()).to(hotword_scores.device)
dec_filter = torch.topk(hotword_scores, min(nfilter, num_hot_word - 1))[1].tolist()
add_filter = dec_filter
add_filter.append(len(hw_list_pad) - 1)
# filter hotword embedding
selected = selected[add_filter]
# again
contextual_info = (
selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
)
num_hot_word = contextual_info.shape[1]
_contextual_length = (
torch.Tensor([num_hot_word])
.int()
.repeat(encoder_out.shape[0])
.to(encoder_out.device)
)
# SeACo Core
cif_attended, _ = self.seaco_decoder(
contextual_info, _contextual_length, sematic_embeds, ys_pad_lens
)
dec_attended, _ = self.seaco_decoder(
contextual_info, _contextual_length, decoder_hidden, ys_pad_lens
)
merged = self._merge(cif_attended, dec_attended)
dha_output = self.hotword_output_layer(
merged
) # remove the last token in loss calculation
dha_pred = torch.log_softmax(dha_output, dim=-1)
def _merge_res(dec_output, dha_output):
lmbd = torch.Tensor([seaco_weight] * dha_output.shape[0])
dha_ids = dha_output.max(-1)[-1] # [0]
dha_mask = (dha_ids == self.NO_BIAS).int().unsqueeze(-1)
a = (1 - lmbd) / lmbd
b = 1 / lmbd
a, b = a.to(dec_output.device), b.to(dec_output.device)
dha_mask = (dha_mask + a.reshape(-1, 1, 1)) / b.reshape(-1, 1, 1)
# logits = dec_output * dha_mask + dha_output[:,:,:-1] * (1-dha_mask)
logits = dec_output * dha_mask + dha_output[:, :, :] * (1 - dha_mask)
return logits
merged_pred = _merge_res(decoder_pred, dha_pred)
return merged_pred
else:
return decoder_pred
def _hotword_representation(self, hotword_pad, hotword_lengths):
if self.bias_encoder_type != "lstm":
logging.error("Unsupported bias encoder type")
"""
hw_embed = self.decoder.embed(hotword_pad)
hw_embed, (_, _) = self.bias_encoder(hw_embed)
if self.lstm_proj is not None:
hw_embed = self.lstm_proj(hw_embed)
_ind = np.arange(0, hw_embed.shape[0]).tolist()
selected = hw_embed[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]]
return selected
"""
# hw_embed = self.sac_embedding(hotword_pad)
hw_embed = self.decoder.embed(hotword_pad)
hw_embed = torch.nn.utils.rnn.pack_padded_sequence(
hw_embed,
hotword_lengths.cpu().type(torch.int64),
batch_first=True,
enforce_sorted=False,
)
packed_rnn_output, _ = self.bias_encoder(hw_embed)
rnn_output = torch.nn.utils.rnn.pad_packed_sequence(packed_rnn_output, batch_first=True)[0]
if self.lstm_proj is not None:
hw_hidden = self.lstm_proj(rnn_output)
else:
hw_hidden = rnn_output
_ind = np.arange(0, hw_hidden.shape[0]).tolist()
selected = hw_hidden[_ind, [i - 1 for i in hotword_lengths.detach().cpu().tolist()]]
return selected
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
# init beamsearch
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
is_use_lm = (
kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
)
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(
data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000)
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
# hotword
self.hotword_list = self.generate_hotwords_list(
kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend
)
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length = predictor_outs[0], predictor_outs[1]
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return ([],)
decoder_out = self._seaco_decode_with_ASF(
encoder_out,
encoder_out_lens,
pre_acoustic_embeds,
pre_token_length,
hw_list=self.hotword_list,
)
# decoder_out, _ = decoder_outs[0], decoder_outs[1]
if self.predictor_name == "CifPredictorV3":
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp(
encoder_out, encoder_out_lens, pre_token_length
)
else:
us_alphas = None
results = []
b, n, d = decoder_out.size()
for i in range(b):
x = encoder_out[i, : encoder_out_lens[i], :]
am_scores = decoder_out[i, : pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x,
am_scores=am_scores,
maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0),
)
nbest_hyps = nbest_hyps[: self.nbest]
else:
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(
lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int
)
)
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
if us_alphas is not None:
_, timestamp = ts_prediction_lfr6_standard(
us_alphas[i][: encoder_out_lens[i] * 3],
us_peaks[i][: encoder_out_lens[i] * 3],
copy.copy(token),
vad_offset=kwargs.get("begin_time", 0),
)
text_postprocessed, time_stamp_postprocessed, _ = (
postprocess_utils.sentence_postprocess(token, timestamp)
)
result_i = {
"key": key[i],
"text": text_postprocessed,
"timestamp": time_stamp_postprocessed,
}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
ibest_writer["text"][key[i]] = text_postprocessed
else:
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
result_i = {"key": key[i], "text": text_postprocessed}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["text"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data
def generate_hotwords_list(self, hotword_list_or_file, tokenizer=None, frontend=None):
def load_seg_dict(seg_dict_file):
seg_dict = {}
assert isinstance(seg_dict_file, str)
with open(seg_dict_file, "r", encoding="utf8") as f:
lines = f.readlines()
for line in lines:
s = line.strip().split()
key = s[0]
value = s[1:]
seg_dict[key] = " ".join(value)
return seg_dict
def seg_tokenize(txt, seg_dict):
pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$")
out_txt = ""
for word in txt:
word = word.lower()
if word in seg_dict:
out_txt += seg_dict[word] + " "
else:
if pattern.match(word):
for char in word:
if char in seg_dict:
out_txt += seg_dict[char] + " "
else:
out_txt += "<unk>" + " "
else:
out_txt += "<unk>" + " "
return out_txt.strip().split()
seg_dict = None
if frontend.cmvn_file is not None:
model_dir = os.path.dirname(frontend.cmvn_file)
seg_dict_file = os.path.join(model_dir, "seg_dict")
if os.path.exists(seg_dict_file):
seg_dict = load_seg_dict(seg_dict_file)
else:
seg_dict = None
# for None
if hotword_list_or_file is None:
hotword_list = None
# for local txt inputs
elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith(".txt"):
logging.info("Attempting to parse hotwords from local txt...")
hotword_list = []
hotword_str_list = []
with codecs.open(hotword_list_or_file, "r") as fin:
for line in fin.readlines():
hw = line.strip()
hw_list = hw.split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_str_list.append(hw)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append("<s>")
logging.info(
"Initialized hotword list from file: {}, hotword list: {}.".format(
hotword_list_or_file, hotword_str_list
)
)
# for url, download and generate txt
elif hotword_list_or_file.startswith("http"):
logging.info("Attempting to parse hotwords from url...")
work_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(work_dir):
os.makedirs(work_dir)
text_file_path = os.path.join(work_dir, os.path.basename(hotword_list_or_file))
local_file = requests.get(hotword_list_or_file)
open(text_file_path, "wb").write(local_file.content)
hotword_list_or_file = text_file_path
hotword_list = []
hotword_str_list = []
with codecs.open(hotword_list_or_file, "r") as fin:
for line in fin.readlines():
hw = line.strip()
hw_list = hw.split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_str_list.append(hw)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append("<s>")
logging.info(
"Initialized hotword list from file: {}, hotword list: {}.".format(
hotword_list_or_file, hotword_str_list
)
)
# for text str input
elif not hotword_list_or_file.endswith(".txt"):
logging.info("Attempting to parse hotwords as str...")
hotword_list = []
hotword_str_list = []
for hw in hotword_list_or_file.strip().split():
hotword_str_list.append(hw)
hw_list = hw.strip().split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append("<s>")
logging.info("Hotword list: {}.".format(hotword_str_list))
else:
hotword_list = None
return hotword_list
def export(
self,
**kwargs,
):
if "max_seq_len" not in kwargs:
kwargs["max_seq_len"] = 512
from .export_meta import export_rebuild_model
models = export_rebuild_model(model=self, **kwargs)
return models