FunASR/funasr/models/paraformer_streaming/export_meta.py

163 lines
5.4 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import types
import torch
from funasr.register import tables
def export_rebuild_model(model, **kwargs):
model.device = kwargs.get("device")
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export")
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export")
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False)
model.forward = types.MethodType(export_forward, model)
model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model)
model.export_input_names = types.MethodType(export_input_names, model)
model.export_output_names = types.MethodType(export_output_names, model)
model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model)
model.export_name = types.MethodType(export_name, model)
return model
def export_rebuild_model(model, **kwargs):
# self.device = kwargs.get("device")
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export")
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
if kwargs["decoder"] == "ParaformerSANMDecoder":
kwargs["decoder"] = "ParaformerSANMDecoderOnline"
decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export")
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(max_seq_len=None, flip=False)
import copy
import types
encoder_model = copy.copy(model)
decoder_model = copy.copy(model)
# encoder
encoder_model.forward = types.MethodType(export_encoder_forward, encoder_model)
encoder_model.export_dummy_inputs = types.MethodType(export_encoder_dummy_inputs, encoder_model)
encoder_model.export_input_names = types.MethodType(export_encoder_input_names, encoder_model)
encoder_model.export_output_names = types.MethodType(export_encoder_output_names, encoder_model)
encoder_model.export_dynamic_axes = types.MethodType(export_encoder_dynamic_axes, encoder_model)
encoder_model.export_name = types.MethodType(export_encoder_name, encoder_model)
# decoder
decoder_model.forward = types.MethodType(export_decoder_forward, decoder_model)
decoder_model.export_dummy_inputs = types.MethodType(export_decoder_dummy_inputs, decoder_model)
decoder_model.export_input_names = types.MethodType(export_decoder_input_names, decoder_model)
decoder_model.export_output_names = types.MethodType(export_decoder_output_names, decoder_model)
decoder_model.export_dynamic_axes = types.MethodType(export_decoder_dynamic_axes, decoder_model)
decoder_model.export_name = types.MethodType(export_decoder_name, decoder_model)
return encoder_model, decoder_model
def export_encoder_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
):
# a. To device
batch = {"speech": speech, "speech_lengths": speech_lengths, "online": True}
# batch = to_device(batch, device=self.device)
enc, enc_len = self.encoder(**batch)
mask = self.make_pad_mask(enc_len)[:, None, :]
alphas, _ = self.predictor.forward_cnn(enc, mask)
return enc, enc_len, alphas
def export_encoder_dummy_inputs(self):
speech = torch.randn(2, 30, 560)
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
return (speech, speech_lengths)
def export_encoder_input_names(self):
return ["speech", "speech_lengths"]
def export_encoder_output_names(self):
return ["enc", "enc_len", "alphas"]
def export_encoder_dynamic_axes(self):
return {
"speech": {0: "batch_size", 1: "feats_length"},
"speech_lengths": {
0: "batch_size",
},
"enc": {0: "batch_size", 1: "feats_length"},
"enc_len": {
0: "batch_size",
},
"alphas": {0: "batch_size", 1: "feats_length"},
}
def export_encoder_name(self):
return "model.onnx"
def export_decoder_forward(
self,
enc: torch.Tensor,
enc_len: torch.Tensor,
acoustic_embeds: torch.Tensor,
acoustic_embeds_len: torch.Tensor,
*args,
):
decoder_out, out_caches = self.decoder(
enc, enc_len, acoustic_embeds, acoustic_embeds_len, *args
)
sample_ids = decoder_out.argmax(dim=-1)
return decoder_out, sample_ids, out_caches
def export_decoder_dummy_inputs(self):
dummy_inputs = self.decoder.get_dummy_inputs(enc_size=self.encoder._output_size)
return dummy_inputs
def export_decoder_input_names(self):
return self.decoder.get_input_names()
def export_decoder_output_names(self):
return self.decoder.get_output_names()
def export_decoder_dynamic_axes(self):
return self.decoder.get_dynamic_axes()
def export_decoder_name(self):
return "decoder.onnx"