FunASR/funasr/models/paraformer/decoder.py

1194 lines
44 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
from typing import List, Tuple
from funasr.register import tables
from funasr.models.scama import utils as myutils
from funasr.models.transformer.utils.repeat import repeat
from funasr.models.transformer.decoder import DecoderLayer
from funasr.models.transformer.layer_norm import LayerNorm
from funasr.models.transformer.embedding import PositionalEncoding
from funasr.models.transformer.attention import MultiHeadedAttention
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.models.transformer.decoder import BaseTransformerDecoder
from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
from funasr.models.sanm.attention import (
MultiHeadedAttentionSANMDecoder,
MultiHeadedAttentionCrossAtt,
)
class DecoderLayerSANM(torch.nn.Module):
"""Single decoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
src_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
size,
self_attn,
src_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
):
"""Construct an DecoderLayer object."""
super(DecoderLayerSANM, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(size)
if self_attn is not None:
self.norm2 = LayerNorm(size)
if src_attn is not None:
self.norm3 = LayerNorm(size)
self.dropout = torch.nn.Dropout(dropout_rate)
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear1 = torch.nn.Linear(size + size, size)
self.concat_linear2 = torch.nn.Linear(size + size, size)
self.reserve_attn = False
self.attn_mat = []
def forward(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
# tgt = self.dropout(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn:
if self.normalize_before:
tgt = self.norm2(tgt)
x, _ = self.self_attn(tgt, tgt_mask)
x = residual + self.dropout(x)
if self.src_attn is not None:
residual = x
if self.normalize_before:
x = self.norm3(x)
if self.reserve_attn:
x_src_attn, attn_mat = self.src_attn(x, memory, memory_mask, ret_attn=True)
self.attn_mat.append(attn_mat)
else:
x_src_attn = self.src_attn(x, memory, memory_mask, ret_attn=False)
x = residual + self.dropout(x_src_attn)
# x = residual + self.dropout(self.src_attn(x, memory, memory_mask))
return x, tgt_mask, memory, memory_mask, cache
def get_attn_mat(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
residual = tgt
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn is not None:
tgt = self.norm2(tgt)
x, cache = self.self_attn(tgt, tgt_mask, cache=cache)
x = residual + x
residual = x
x = self.norm3(x)
x_src_attn, attn_mat = self.src_attn(x, memory, memory_mask, ret_attn=True)
return attn_mat
def forward_one_step(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
# tgt = self.dropout(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn:
if self.normalize_before:
tgt = self.norm2(tgt)
if self.training:
cache = None
x, cache = self.self_attn(tgt, tgt_mask, cache=cache)
x = residual + self.dropout(x)
if self.src_attn is not None:
residual = x
if self.normalize_before:
x = self.norm3(x)
x = residual + self.dropout(self.src_attn(x, memory, memory_mask))
return x, tgt_mask, memory, memory_mask, cache
def forward_chunk(
self, tgt, memory, fsmn_cache=None, opt_cache=None, chunk_size=None, look_back=0
):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn:
if self.normalize_before:
tgt = self.norm2(tgt)
x, fsmn_cache = self.self_attn(tgt, None, fsmn_cache)
x = residual + self.dropout(x)
if self.src_attn is not None:
residual = x
if self.normalize_before:
x = self.norm3(x)
x, opt_cache = self.src_attn.forward_chunk(x, memory, opt_cache, chunk_size, look_back)
x = residual + x
return x, memory, fsmn_cache, opt_cache
@tables.register("decoder_classes", "ParaformerSANMDecoder")
class ParaformerSANMDecoder(BaseTransformerDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2006.01713
"""
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
wo_input_layer: bool = False,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
att_layer_num: int = 6,
kernel_size: int = 21,
sanm_shfit: int = 0,
lora_list: List[str] = None,
lora_rank: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.1,
chunk_multiply_factor: tuple = (1,),
tf2torch_tensor_name_prefix_torch: str = "decoder",
tf2torch_tensor_name_prefix_tf: str = "seq2seq/decoder",
):
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
attention_dim = encoder_output_size
if wo_input_layer:
self.embed = None
else:
if input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(vocab_size, attention_dim),
# pos_enc_class(attention_dim, positional_dropout_rate),
)
elif input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(vocab_size, attention_dim),
torch.nn.LayerNorm(attention_dim),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(attention_dim, positional_dropout_rate),
)
else:
raise ValueError(f"only 'embed' or 'linear' is supported: {input_layer}")
self.normalize_before = normalize_before
if self.normalize_before:
self.after_norm = LayerNorm(attention_dim)
if use_output_layer:
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
else:
self.output_layer = None
self.att_layer_num = att_layer_num
self.num_blocks = num_blocks
if sanm_shfit is None:
sanm_shfit = (kernel_size - 1) // 2
self.decoders = repeat(
att_layer_num,
lambda lnum: DecoderLayerSANM(
attention_dim,
MultiHeadedAttentionSANMDecoder(
attention_dim, self_attention_dropout_rate, kernel_size, sanm_shfit=sanm_shfit
),
MultiHeadedAttentionCrossAtt(
attention_heads,
attention_dim,
src_attention_dropout_rate,
lora_list,
lora_rank,
lora_alpha,
lora_dropout,
),
PositionwiseFeedForwardDecoderSANM(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
if num_blocks - att_layer_num <= 0:
self.decoders2 = None
else:
self.decoders2 = repeat(
num_blocks - att_layer_num,
lambda lnum: DecoderLayerSANM(
attention_dim,
MultiHeadedAttentionSANMDecoder(
attention_dim, self_attention_dropout_rate, kernel_size, sanm_shfit=0
),
None,
PositionwiseFeedForwardDecoderSANM(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
self.decoders3 = repeat(
1,
lambda lnum: DecoderLayerSANM(
attention_dim,
None,
None,
PositionwiseFeedForwardDecoderSANM(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.chunk_multiply_factor = chunk_multiply_factor
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
chunk_mask: torch.Tensor = None,
return_hidden: bool = False,
return_both: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
if chunk_mask is not None:
memory_mask = memory_mask * chunk_mask
if tgt_mask.size(1) != memory_mask.size(1):
memory_mask = torch.cat((memory_mask, memory_mask[:, -2:-1, :]), dim=1)
x = tgt
x, tgt_mask, memory, memory_mask, _ = self.decoders(x, tgt_mask, memory, memory_mask)
if self.decoders2 is not None:
x, tgt_mask, memory, memory_mask, _ = self.decoders2(x, tgt_mask, memory, memory_mask)
x, tgt_mask, memory, memory_mask, _ = self.decoders3(x, tgt_mask, memory, memory_mask)
if self.normalize_before:
hidden = self.after_norm(x)
olens = tgt_mask.sum(1)
if self.output_layer is not None and return_hidden is False:
x = self.output_layer(hidden)
return x, olens
if return_both:
x = self.output_layer(hidden)
return x, hidden, olens
return hidden, olens
def score(self, ys, state, x):
"""Score."""
ys_mask = myutils.sequence_mask(
torch.tensor([len(ys)], dtype=torch.int32), device=x.device
)[:, :, None]
logp, state = self.forward_one_step(ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state)
return logp.squeeze(0), state
def forward_asf2(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
):
tgt = ys_in_pad
tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
tgt, tgt_mask, memory, memory_mask, _ = self.decoders[0](tgt, tgt_mask, memory, memory_mask)
attn_mat = self.model.decoders[1].get_attn_mat(tgt, tgt_mask, memory, memory_mask)
return attn_mat
def forward_asf6(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
):
tgt = ys_in_pad
tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
tgt, tgt_mask, memory, memory_mask, _ = self.decoders[0](tgt, tgt_mask, memory, memory_mask)
tgt, tgt_mask, memory, memory_mask, _ = self.decoders[1](tgt, tgt_mask, memory, memory_mask)
tgt, tgt_mask, memory, memory_mask, _ = self.decoders[2](tgt, tgt_mask, memory, memory_mask)
tgt, tgt_mask, memory, memory_mask, _ = self.decoders[3](tgt, tgt_mask, memory, memory_mask)
tgt, tgt_mask, memory, memory_mask, _ = self.decoders[4](tgt, tgt_mask, memory, memory_mask)
attn_mat = self.decoders[5].get_attn_mat(tgt, tgt_mask, memory, memory_mask)
return attn_mat
def forward_chunk(
self,
memory: torch.Tensor,
tgt: torch.Tensor,
cache: dict = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
x = tgt
if cache["decode_fsmn"] is None:
cache_layer_num = len(self.decoders)
if self.decoders2 is not None:
cache_layer_num += len(self.decoders2)
fsmn_cache = [None] * cache_layer_num
else:
fsmn_cache = cache["decode_fsmn"]
if cache["opt"] is None:
cache_layer_num = len(self.decoders)
opt_cache = [None] * cache_layer_num
else:
opt_cache = cache["opt"]
for i in range(self.att_layer_num):
decoder = self.decoders[i]
x, memory, fsmn_cache[i], opt_cache[i] = decoder.forward_chunk(
x,
memory,
fsmn_cache=fsmn_cache[i],
opt_cache=opt_cache[i],
chunk_size=cache["chunk_size"],
look_back=cache["decoder_chunk_look_back"],
)
if self.num_blocks - self.att_layer_num > 1:
for i in range(self.num_blocks - self.att_layer_num):
j = i + self.att_layer_num
decoder = self.decoders2[i]
x, memory, fsmn_cache[j], _ = decoder.forward_chunk(
x, memory, fsmn_cache=fsmn_cache[j]
)
for decoder in self.decoders3:
x, memory, _, _ = decoder.forward_chunk(x, memory)
if self.normalize_before:
x = self.after_norm(x)
if self.output_layer is not None:
x = self.output_layer(x)
cache["decode_fsmn"] = fsmn_cache
if cache["decoder_chunk_look_back"] > 0 or cache["decoder_chunk_look_back"] == -1:
cache["opt"] = opt_cache
return x
def forward_one_step(
self,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
memory: torch.Tensor,
cache: List[torch.Tensor] = None,
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward one step.
Args:
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
memory: encoded memory, float32 (batch, maxlen_in, feat)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
x = self.embed(tgt)
if cache is None:
cache_layer_num = len(self.decoders)
if self.decoders2 is not None:
cache_layer_num += len(self.decoders2)
cache = [None] * cache_layer_num
new_cache = []
# for c, decoder in zip(cache, self.decoders):
for i in range(self.att_layer_num):
decoder = self.decoders[i]
c = cache[i]
x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_one_step(
x, tgt_mask, memory, None, cache=c
)
new_cache.append(c_ret)
if self.num_blocks - self.att_layer_num > 1:
for i in range(self.num_blocks - self.att_layer_num):
j = i + self.att_layer_num
decoder = self.decoders2[i]
c = cache[j]
x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_one_step(
x, tgt_mask, memory, None, cache=c
)
new_cache.append(c_ret)
for decoder in self.decoders3:
x, tgt_mask, memory, memory_mask, _ = decoder.forward_one_step(
x, tgt_mask, memory, None, cache=None
)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.output_layer is not None:
y = torch.log_softmax(self.output_layer(y), dim=-1)
return y, new_cache
class DecoderLayerSANMExport(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.self_attn = model.self_attn
self.src_attn = model.src_attn
self.feed_forward = model.feed_forward
self.norm1 = model.norm1
self.norm2 = model.norm2 if hasattr(model, "norm2") else None
self.norm3 = model.norm3 if hasattr(model, "norm3") else None
self.size = model.size
def forward(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
residual = tgt
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn is not None:
tgt = self.norm2(tgt)
x, cache = self.self_attn(tgt, tgt_mask, cache=cache)
x = residual + x
if self.src_attn is not None:
residual = x
x = self.norm3(x)
x = residual + self.src_attn(x, memory, memory_mask)
return x, tgt_mask, memory, memory_mask, cache
def get_attn_mat(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
residual = tgt
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn is not None:
tgt = self.norm2(tgt)
x, cache = self.self_attn(tgt, tgt_mask, cache=cache)
x = residual + x
residual = x
x = self.norm3(x)
x_src_attn, attn_mat = self.src_attn(x, memory, memory_mask, ret_attn=True)
return attn_mat
@tables.register("decoder_classes", "ParaformerSANMDecoderExport")
class ParaformerSANMDecoderExport(torch.nn.Module):
def __init__(self, model, max_seq_len=512, model_name="decoder", onnx: bool = True, **kwargs):
super().__init__()
# self.embed = model.embed #Embedding(model.embed, max_seq_len)
from funasr.utils.torch_function import sequence_mask
self.model = model
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
from funasr.models.sanm.attention import MultiHeadedAttentionSANMDecoderExport
from funasr.models.sanm.attention import MultiHeadedAttentionCrossAttExport
for i, d in enumerate(self.model.decoders):
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
d.self_attn = MultiHeadedAttentionSANMDecoderExport(d.self_attn)
if isinstance(d.src_attn, MultiHeadedAttentionCrossAtt):
d.src_attn = MultiHeadedAttentionCrossAttExport(d.src_attn)
self.model.decoders[i] = DecoderLayerSANMExport(d)
if self.model.decoders2 is not None:
for i, d in enumerate(self.model.decoders2):
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
d.self_attn = MultiHeadedAttentionSANMDecoderExport(d.self_attn)
self.model.decoders2[i] = DecoderLayerSANMExport(d)
for i, d in enumerate(self.model.decoders3):
self.model.decoders3[i] = DecoderLayerSANMExport(d)
self.output_layer = model.output_layer
self.after_norm = model.after_norm
self.model_name = model_name
def prepare_mask(self, mask):
mask_3d_btd = mask[:, :, None]
if len(mask.shape) == 2:
mask_4d_bhlt = 1 - mask[:, None, None, :]
elif len(mask.shape) == 3:
mask_4d_bhlt = 1 - mask[:, None, :]
mask_4d_bhlt = mask_4d_bhlt * -10000.0
return mask_3d_btd, mask_4d_bhlt
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
return_hidden: bool = False,
return_both: bool = False,
):
tgt = ys_in_pad
tgt_mask = self.make_pad_mask(ys_in_lens)
tgt_mask, _ = self.prepare_mask(tgt_mask)
# tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = self.make_pad_mask(hlens)
_, memory_mask = self.prepare_mask(memory_mask)
# memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
x = tgt
x, tgt_mask, memory, memory_mask, _ = self.model.decoders(x, tgt_mask, memory, memory_mask)
if self.model.decoders2 is not None:
x, tgt_mask, memory, memory_mask, _ = self.model.decoders2(
x, tgt_mask, memory, memory_mask
)
x, tgt_mask, memory, memory_mask, _ = self.model.decoders3(x, tgt_mask, memory, memory_mask)
hidden = self.after_norm(x)
# x = self.output_layer(x)
if self.output_layer is not None and return_hidden is False:
x = self.output_layer(hidden)
return x, ys_in_lens
if return_both:
x = self.output_layer(hidden)
return x, hidden, ys_in_lens
return hidden, ys_in_lens
def forward_asf2(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
):
tgt = ys_in_pad
tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
_, memory_mask = self.prepare_mask(memory_mask)
tgt, tgt_mask, memory, memory_mask, _ = self.model.decoders[0](
tgt, tgt_mask, memory, memory_mask
)
attn_mat = self.model.decoders[1].get_attn_mat(tgt, tgt_mask, memory, memory_mask)
return attn_mat
def forward_asf6(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
):
tgt = ys_in_pad
tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
_, memory_mask = self.prepare_mask(memory_mask)
tgt, tgt_mask, memory, memory_mask, _ = self.model.decoders[0](
tgt, tgt_mask, memory, memory_mask
)
tgt, tgt_mask, memory, memory_mask, _ = self.model.decoders[1](
tgt, tgt_mask, memory, memory_mask
)
tgt, tgt_mask, memory, memory_mask, _ = self.model.decoders[2](
tgt, tgt_mask, memory, memory_mask
)
tgt, tgt_mask, memory, memory_mask, _ = self.model.decoders[3](
tgt, tgt_mask, memory, memory_mask
)
tgt, tgt_mask, memory, memory_mask, _ = self.model.decoders[4](
tgt, tgt_mask, memory, memory_mask
)
attn_mat = self.model.decoders[5].get_attn_mat(tgt, tgt_mask, memory, memory_mask)
return attn_mat
"""
def get_dummy_inputs(self, enc_size):
tgt = torch.LongTensor([0]).unsqueeze(0)
memory = torch.randn(1, 100, enc_size)
pre_acoustic_embeds = torch.randn(1, 1, enc_size)
cache_num = len(self.model.decoders) + len(self.model.decoders2)
cache = [
torch.zeros((1, self.model.decoders[0].size, self.model.decoders[0].self_attn.kernel_size))
for _ in range(cache_num)
]
return (tgt, memory, pre_acoustic_embeds, cache)
def is_optimizable(self):
return True
def get_input_names(self):
cache_num = len(self.model.decoders) + len(self.model.decoders2)
return ['tgt', 'memory', 'pre_acoustic_embeds'] \
+ ['cache_%d' % i for i in range(cache_num)]
def get_output_names(self):
cache_num = len(self.model.decoders) + len(self.model.decoders2)
return ['y'] \
+ ['out_cache_%d' % i for i in range(cache_num)]
def get_dynamic_axes(self):
ret = {
'tgt': {
0: 'tgt_batch',
1: 'tgt_length'
},
'memory': {
0: 'memory_batch',
1: 'memory_length'
},
'pre_acoustic_embeds': {
0: 'acoustic_embeds_batch',
1: 'acoustic_embeds_length',
}
}
cache_num = len(self.model.decoders) + len(self.model.decoders2)
ret.update({
'cache_%d' % d: {
0: 'cache_%d_batch' % d,
2: 'cache_%d_length' % d
}
for d in range(cache_num)
})
return ret
"""
@tables.register("decoder_classes", "ParaformerSANMDecoderOnlineExport")
class ParaformerSANMDecoderOnlineExport(torch.nn.Module):
def __init__(self, model, max_seq_len=512, model_name="decoder", onnx: bool = True, **kwargs):
super().__init__()
# self.embed = model.embed #Embedding(model.embed, max_seq_len)
self.model = model
from funasr.utils.torch_function import sequence_mask
self.model = model
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
from funasr.models.sanm.attention import MultiHeadedAttentionSANMDecoderExport
from funasr.models.sanm.attention import MultiHeadedAttentionCrossAttExport
for i, d in enumerate(self.model.decoders):
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
d.self_attn = MultiHeadedAttentionSANMDecoderExport(d.self_attn)
if isinstance(d.src_attn, MultiHeadedAttentionCrossAtt):
d.src_attn = MultiHeadedAttentionCrossAttExport(d.src_attn)
self.model.decoders[i] = DecoderLayerSANMExport(d)
if self.model.decoders2 is not None:
for i, d in enumerate(self.model.decoders2):
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
d.self_attn = MultiHeadedAttentionSANMDecoderExport(d.self_attn)
self.model.decoders2[i] = DecoderLayerSANMExport(d)
for i, d in enumerate(self.model.decoders3):
self.model.decoders3[i] = DecoderLayerSANMExport(d)
self.output_layer = model.output_layer
self.after_norm = model.after_norm
self.model_name = model_name
def prepare_mask(self, mask):
mask_3d_btd = mask[:, :, None]
if len(mask.shape) == 2:
mask_4d_bhlt = 1 - mask[:, None, None, :]
elif len(mask.shape) == 3:
mask_4d_bhlt = 1 - mask[:, None, :]
mask_4d_bhlt = mask_4d_bhlt * -10000.0
return mask_3d_btd, mask_4d_bhlt
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
*args,
):
tgt = ys_in_pad
tgt_mask = self.make_pad_mask(ys_in_lens)
tgt_mask, _ = self.prepare_mask(tgt_mask)
# tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = self.make_pad_mask(hlens)
_, memory_mask = self.prepare_mask(memory_mask)
# memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
x = tgt
out_caches = list()
for i, decoder in enumerate(self.model.decoders):
in_cache = args[i]
x, tgt_mask, memory, memory_mask, out_cache = decoder(
x, tgt_mask, memory, memory_mask, cache=in_cache
)
out_caches.append(out_cache)
if self.model.decoders2 is not None:
for i, decoder in enumerate(self.model.decoders2):
in_cache = args[i + len(self.model.decoders)]
x, tgt_mask, memory, memory_mask, out_cache = decoder(
x, tgt_mask, memory, memory_mask, cache=in_cache
)
out_caches.append(out_cache)
x, tgt_mask, memory, memory_mask, _ = self.model.decoders3(x, tgt_mask, memory, memory_mask)
x = self.after_norm(x)
x = self.output_layer(x)
return x, out_caches
def get_dummy_inputs(self, enc_size):
enc = torch.randn(2, 100, enc_size).type(torch.float32)
enc_len = torch.tensor([30, 100], dtype=torch.int32)
acoustic_embeds = torch.randn(2, 10, enc_size).type(torch.float32)
acoustic_embeds_len = torch.tensor([5, 10], dtype=torch.int32)
cache_num = len(self.model.decoders)
if hasattr(self.model, "decoders2") and self.model.decoders2 is not None:
cache_num += len(self.model.decoders2)
cache = [
torch.zeros(
(2, self.model.decoders[0].size, self.model.decoders[0].self_attn.kernel_size - 1),
dtype=torch.float32,
)
for _ in range(cache_num)
]
return (enc, enc_len, acoustic_embeds, acoustic_embeds_len, *cache)
def get_input_names(self):
cache_num = len(self.model.decoders)
if hasattr(self.model, "decoders2") and self.model.decoders2 is not None:
cache_num += len(self.model.decoders2)
return ["enc", "enc_len", "acoustic_embeds", "acoustic_embeds_len"] + [
"in_cache_%d" % i for i in range(cache_num)
]
def get_output_names(self):
cache_num = len(self.model.decoders)
if hasattr(self.model, "decoders2") and self.model.decoders2 is not None:
cache_num += len(self.model.decoders2)
return ["logits", "sample_ids"] + ["out_cache_%d" % i for i in range(cache_num)]
def get_dynamic_axes(self):
ret = {
"enc": {0: "batch_size", 1: "enc_length"},
"acoustic_embeds": {0: "batch_size", 1: "token_length"},
"enc_len": {
0: "batch_size",
},
"acoustic_embeds_len": {
0: "batch_size",
},
}
cache_num = len(self.model.decoders)
if hasattr(self.model, "decoders2") and self.model.decoders2 is not None:
cache_num += len(self.model.decoders2)
ret.update(
{
"in_cache_%d"
% d: {
0: "batch_size",
}
for d in range(cache_num)
}
)
ret.update(
{
"out_cache_%d"
% d: {
0: "batch_size",
}
for d in range(cache_num)
}
)
return ret
@tables.register("decoder_classes", "ParaformerSANDecoder")
class ParaformerSANDecoder(BaseTransformerDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2006.01713
"""
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
embeds_id: int = -1,
):
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
attention_dim = encoder_output_size
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate),
MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
self.embeds_id = embeds_id
self.attention_dim = attention_dim
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device)
memory = hs_pad
memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to(memory.device)
# Padding for Longformer
if memory_mask.shape[-1] != memory.shape[1]:
padlen = memory.shape[1] - memory_mask.shape[-1]
memory_mask = torch.nn.functional.pad(memory_mask, (0, padlen), "constant", False)
# x = self.embed(tgt)
x = tgt
embeds_outputs = None
for layer_id, decoder in enumerate(self.decoders):
x, tgt_mask, memory, memory_mask = decoder(x, tgt_mask, memory, memory_mask)
if layer_id == self.embeds_id:
embeds_outputs = x
if self.normalize_before:
x = self.after_norm(x)
if self.output_layer is not None:
x = self.output_layer(x)
olens = tgt_mask.sum(1)
if embeds_outputs is not None:
return x, olens, embeds_outputs
else:
return x, olens
@tables.register("decoder_classes", "ParaformerDecoderSANExport")
class ParaformerDecoderSANExport(torch.nn.Module):
def __init__(
self,
model,
max_seq_len=512,
model_name="decoder",
onnx: bool = True,
):
super().__init__()
# self.embed = model.embed #Embedding(model.embed, max_seq_len)
self.model = model
from funasr.utils.torch_function import sequence_mask
self.model = model
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
from funasr.models.transformer.decoder import DecoderLayerExport
from funasr.models.transformer.attention import MultiHeadedAttentionExport
for i, d in enumerate(self.model.decoders):
if isinstance(d.src_attn, MultiHeadedAttention):
d.src_attn = MultiHeadedAttentionExport(d.src_attn)
self.model.decoders[i] = DecoderLayerExport(d)
self.output_layer = model.output_layer
self.after_norm = model.after_norm
self.model_name = model_name
def prepare_mask(self, mask):
mask_3d_btd = mask[:, :, None]
if len(mask.shape) == 2:
mask_4d_bhlt = 1 - mask[:, None, None, :]
elif len(mask.shape) == 3:
mask_4d_bhlt = 1 - mask[:, None, :]
mask_4d_bhlt = mask_4d_bhlt * -10000.0
return mask_3d_btd, mask_4d_bhlt
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
):
tgt = ys_in_pad
tgt_mask = self.make_pad_mask(ys_in_lens)
tgt_mask, _ = self.prepare_mask(tgt_mask)
# tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = self.make_pad_mask(hlens)
_, memory_mask = self.prepare_mask(memory_mask)
# memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
x = tgt
x, tgt_mask, memory, memory_mask = self.model.decoders(x, tgt_mask, memory, memory_mask)
x = self.after_norm(x)
x = self.output_layer(x)
return x, ys_in_lens
def get_dummy_inputs(self, enc_size):
tgt = torch.LongTensor([0]).unsqueeze(0)
memory = torch.randn(1, 100, enc_size)
pre_acoustic_embeds = torch.randn(1, 1, enc_size)
cache_num = len(self.model.decoders) + len(self.model.decoders2)
cache = [
torch.zeros(
(1, self.model.decoders[0].size, self.model.decoders[0].self_attn.kernel_size)
)
for _ in range(cache_num)
]
return (tgt, memory, pre_acoustic_embeds, cache)
def is_optimizable(self):
return True
def get_input_names(self):
cache_num = len(self.model.decoders) + len(self.model.decoders2)
return ["tgt", "memory", "pre_acoustic_embeds"] + ["cache_%d" % i for i in range(cache_num)]
def get_output_names(self):
cache_num = len(self.model.decoders) + len(self.model.decoders2)
return ["y"] + ["out_cache_%d" % i for i in range(cache_num)]
def get_dynamic_axes(self):
ret = {
"tgt": {0: "tgt_batch", 1: "tgt_length"},
"memory": {0: "memory_batch", 1: "memory_length"},
"pre_acoustic_embeds": {
0: "acoustic_embeds_batch",
1: "acoustic_embeds_length",
},
}
cache_num = len(self.model.decoders) + len(self.model.decoders2)
ret.update(
{
"cache_%d" % d: {0: "cache_%d_batch" % d, 2: "cache_%d_length" % d}
for d in range(cache_num)
}
)
return ret