399 lines
14 KiB
Python
399 lines
14 KiB
Python
|
# Copyright 2019 Shigeki Karita
|
||
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||
|
|
||
|
"""Transformer encoder definition."""
|
||
|
|
||
|
from typing import List
|
||
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
import logging
|
||
|
|
||
|
from funasr.models.transformer.attention import MultiHeadedAttention
|
||
|
from funasr.models.lcbnet.attention import MultiHeadedAttentionReturnWeight
|
||
|
from funasr.models.transformer.embedding import PositionalEncoding
|
||
|
from funasr.models.transformer.layer_norm import LayerNorm
|
||
|
|
||
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||
|
from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
||
|
from funasr.models.transformer.utils.repeat import repeat
|
||
|
from funasr.register import tables
|
||
|
|
||
|
|
||
|
class EncoderLayer(nn.Module):
|
||
|
"""Encoder layer module.
|
||
|
|
||
|
Args:
|
||
|
size (int): Input dimension.
|
||
|
self_attn (torch.nn.Module): Self-attention module instance.
|
||
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
|
||
|
can be used as the argument.
|
||
|
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||
|
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
||
|
can be used as the argument.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
normalize_before (bool): Whether to use layer_norm before the first block.
|
||
|
concat_after (bool): Whether to concat attention layer's input and output.
|
||
|
if True, additional linear will be applied.
|
||
|
i.e. x -> x + linear(concat(x, att(x)))
|
||
|
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
||
|
stochastic_depth_rate (float): Proability to skip this layer.
|
||
|
During training, the layer may skip residual computation and return input
|
||
|
as-is with given probability.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
size,
|
||
|
self_attn,
|
||
|
feed_forward,
|
||
|
dropout_rate,
|
||
|
normalize_before=True,
|
||
|
concat_after=False,
|
||
|
stochastic_depth_rate=0.0,
|
||
|
):
|
||
|
"""Construct an EncoderLayer object."""
|
||
|
super(EncoderLayer, self).__init__()
|
||
|
self.self_attn = self_attn
|
||
|
self.feed_forward = feed_forward
|
||
|
self.norm1 = LayerNorm(size)
|
||
|
self.norm2 = LayerNorm(size)
|
||
|
self.dropout = nn.Dropout(dropout_rate)
|
||
|
self.size = size
|
||
|
self.normalize_before = normalize_before
|
||
|
self.concat_after = concat_after
|
||
|
if self.concat_after:
|
||
|
self.concat_linear = nn.Linear(size + size, size)
|
||
|
self.stochastic_depth_rate = stochastic_depth_rate
|
||
|
|
||
|
def forward(self, x, mask, cache=None):
|
||
|
"""Compute encoded features.
|
||
|
|
||
|
Args:
|
||
|
x_input (torch.Tensor): Input tensor (#batch, time, size).
|
||
|
mask (torch.Tensor): Mask tensor for the input (#batch, time).
|
||
|
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, time, size).
|
||
|
torch.Tensor: Mask tensor (#batch, time).
|
||
|
|
||
|
"""
|
||
|
skip_layer = False
|
||
|
# with stochastic depth, residual connection `x + f(x)` becomes
|
||
|
# `x <- x + 1 / (1 - p) * f(x)` at training time.
|
||
|
stoch_layer_coeff = 1.0
|
||
|
if self.training and self.stochastic_depth_rate > 0:
|
||
|
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
|
||
|
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
|
||
|
|
||
|
if skip_layer:
|
||
|
if cache is not None:
|
||
|
x = torch.cat([cache, x], dim=1)
|
||
|
return x, mask
|
||
|
|
||
|
residual = x
|
||
|
if self.normalize_before:
|
||
|
x = self.norm1(x)
|
||
|
|
||
|
if cache is None:
|
||
|
x_q = x
|
||
|
else:
|
||
|
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
|
||
|
x_q = x[:, -1:, :]
|
||
|
residual = residual[:, -1:, :]
|
||
|
mask = None if mask is None else mask[:, -1:, :]
|
||
|
|
||
|
if self.concat_after:
|
||
|
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
|
||
|
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
|
||
|
else:
|
||
|
x = residual + stoch_layer_coeff * self.dropout(self.self_attn(x_q, x, x, mask))
|
||
|
if not self.normalize_before:
|
||
|
x = self.norm1(x)
|
||
|
|
||
|
residual = x
|
||
|
if self.normalize_before:
|
||
|
x = self.norm2(x)
|
||
|
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
|
||
|
if not self.normalize_before:
|
||
|
x = self.norm2(x)
|
||
|
|
||
|
if cache is not None:
|
||
|
x = torch.cat([cache, x], dim=1)
|
||
|
|
||
|
return x, mask
|
||
|
|
||
|
|
||
|
@tables.register("encoder_classes", "TransformerTextEncoder")
|
||
|
class TransformerTextEncoder(nn.Module):
|
||
|
"""Transformer text encoder module.
|
||
|
|
||
|
Args:
|
||
|
input_size: input dim
|
||
|
output_size: dimension of attention
|
||
|
attention_heads: the number of heads of multi head attention
|
||
|
linear_units: the number of units of position-wise feed forward
|
||
|
num_blocks: the number of decoder blocks
|
||
|
dropout_rate: dropout rate
|
||
|
attention_dropout_rate: dropout rate in attention
|
||
|
positional_dropout_rate: dropout rate after adding positional encoding
|
||
|
input_layer: input layer type
|
||
|
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
||
|
normalize_before: whether to use layer_norm before the first block
|
||
|
concat_after: whether to concat attention layer's input and output
|
||
|
if True, additional linear will be applied.
|
||
|
i.e. x -> x + linear(concat(x, att(x)))
|
||
|
if False, no additional linear will be applied.
|
||
|
i.e. x -> x + att(x)
|
||
|
positionwise_layer_type: linear of conv1d
|
||
|
positionwise_conv_kernel_size: kernel size of positionwise conv1d layer
|
||
|
padding_idx: padding_idx for input_layer=embed
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
input_size: int,
|
||
|
output_size: int = 256,
|
||
|
attention_heads: int = 4,
|
||
|
linear_units: int = 2048,
|
||
|
num_blocks: int = 6,
|
||
|
dropout_rate: float = 0.1,
|
||
|
positional_dropout_rate: float = 0.1,
|
||
|
attention_dropout_rate: float = 0.0,
|
||
|
pos_enc_class=PositionalEncoding,
|
||
|
normalize_before: bool = True,
|
||
|
concat_after: bool = False,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self._output_size = output_size
|
||
|
|
||
|
self.embed = torch.nn.Sequential(
|
||
|
torch.nn.Embedding(input_size, output_size),
|
||
|
pos_enc_class(output_size, positional_dropout_rate),
|
||
|
)
|
||
|
|
||
|
self.normalize_before = normalize_before
|
||
|
|
||
|
positionwise_layer = PositionwiseFeedForward
|
||
|
positionwise_layer_args = (
|
||
|
output_size,
|
||
|
linear_units,
|
||
|
dropout_rate,
|
||
|
)
|
||
|
self.encoders = repeat(
|
||
|
num_blocks,
|
||
|
lambda lnum: EncoderLayer(
|
||
|
output_size,
|
||
|
MultiHeadedAttention(attention_heads, output_size, attention_dropout_rate),
|
||
|
positionwise_layer(*positionwise_layer_args),
|
||
|
dropout_rate,
|
||
|
normalize_before,
|
||
|
concat_after,
|
||
|
),
|
||
|
)
|
||
|
if self.normalize_before:
|
||
|
self.after_norm = LayerNorm(output_size)
|
||
|
|
||
|
def output_size(self) -> int:
|
||
|
return self._output_size
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
xs_pad: torch.Tensor,
|
||
|
ilens: torch.Tensor,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||
|
"""Embed positions in tensor.
|
||
|
|
||
|
Args:
|
||
|
xs_pad: input tensor (B, L, D)
|
||
|
ilens: input length (B)
|
||
|
Returns:
|
||
|
position embedded tensor and mask
|
||
|
"""
|
||
|
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
||
|
xs_pad = self.embed(xs_pad)
|
||
|
|
||
|
xs_pad, masks = self.encoders(xs_pad, masks)
|
||
|
|
||
|
if self.normalize_before:
|
||
|
xs_pad = self.after_norm(xs_pad)
|
||
|
|
||
|
olens = masks.squeeze(1).sum(1)
|
||
|
return xs_pad, olens, None
|
||
|
|
||
|
|
||
|
@tables.register("encoder_classes", "FusionSANEncoder")
|
||
|
class SelfSrcAttention(nn.Module):
|
||
|
"""Single decoder layer module.
|
||
|
|
||
|
Args:
|
||
|
size (int): Input dimension.
|
||
|
self_attn (torch.nn.Module): Self-attention module instance.
|
||
|
`MultiHeadedAttention` instance can be used as the argument.
|
||
|
src_attn (torch.nn.Module): Self-attention module instance.
|
||
|
`MultiHeadedAttention` instance can be used as the argument.
|
||
|
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||
|
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
||
|
can be used as the argument.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
normalize_before (bool): Whether to use layer_norm before the first block.
|
||
|
concat_after (bool): Whether to concat attention layer's input and output.
|
||
|
if True, additional linear will be applied.
|
||
|
i.e. x -> x + linear(concat(x, att(x)))
|
||
|
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
||
|
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
size,
|
||
|
attention_heads,
|
||
|
attention_dim,
|
||
|
linear_units,
|
||
|
self_attention_dropout_rate,
|
||
|
src_attention_dropout_rate,
|
||
|
positional_dropout_rate,
|
||
|
dropout_rate,
|
||
|
normalize_before=True,
|
||
|
concat_after=False,
|
||
|
):
|
||
|
"""Construct an SelfSrcAttention object."""
|
||
|
super(SelfSrcAttention, self).__init__()
|
||
|
self.size = size
|
||
|
self.self_attn = MultiHeadedAttention(
|
||
|
attention_heads, attention_dim, self_attention_dropout_rate
|
||
|
)
|
||
|
self.src_attn = MultiHeadedAttentionReturnWeight(
|
||
|
attention_heads, attention_dim, src_attention_dropout_rate
|
||
|
)
|
||
|
self.feed_forward = PositionwiseFeedForward(
|
||
|
attention_dim, linear_units, positional_dropout_rate
|
||
|
)
|
||
|
self.norm1 = LayerNorm(size)
|
||
|
self.norm2 = LayerNorm(size)
|
||
|
self.norm3 = LayerNorm(size)
|
||
|
self.dropout = nn.Dropout(dropout_rate)
|
||
|
self.normalize_before = normalize_before
|
||
|
self.concat_after = concat_after
|
||
|
if self.concat_after:
|
||
|
self.concat_linear1 = nn.Linear(size + size, size)
|
||
|
self.concat_linear2 = nn.Linear(size + size, size)
|
||
|
|
||
|
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None):
|
||
|
"""Compute decoded features.
|
||
|
|
||
|
Args:
|
||
|
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
||
|
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
|
||
|
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
|
||
|
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
|
||
|
cache (List[torch.Tensor]): List of cached tensors.
|
||
|
Each tensor shape should be (#batch, maxlen_out - 1, size).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor(#batch, maxlen_out, size).
|
||
|
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
||
|
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
||
|
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
||
|
|
||
|
"""
|
||
|
residual = tgt
|
||
|
if self.normalize_before:
|
||
|
tgt = self.norm1(tgt)
|
||
|
|
||
|
if cache is None:
|
||
|
tgt_q = tgt
|
||
|
tgt_q_mask = tgt_mask
|
||
|
else:
|
||
|
# compute only the last frame query keeping dim: max_time_out -> 1
|
||
|
assert cache.shape == (
|
||
|
tgt.shape[0],
|
||
|
tgt.shape[1] - 1,
|
||
|
self.size,
|
||
|
), f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
||
|
tgt_q = tgt[:, -1:, :]
|
||
|
residual = residual[:, -1:, :]
|
||
|
tgt_q_mask = None
|
||
|
if tgt_mask is not None:
|
||
|
tgt_q_mask = tgt_mask[:, -1:, :]
|
||
|
|
||
|
if self.concat_after:
|
||
|
tgt_concat = torch.cat((tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)), dim=-1)
|
||
|
x = residual + self.concat_linear1(tgt_concat)
|
||
|
else:
|
||
|
x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask))
|
||
|
if not self.normalize_before:
|
||
|
x = self.norm1(x)
|
||
|
|
||
|
residual = x
|
||
|
if self.normalize_before:
|
||
|
x = self.norm2(x)
|
||
|
if self.concat_after:
|
||
|
x_concat = torch.cat((x, self.src_attn(x, memory, memory, memory_mask)), dim=-1)
|
||
|
x = residual + self.concat_linear2(x_concat)
|
||
|
else:
|
||
|
x, score = self.src_attn(x, memory, memory, memory_mask)
|
||
|
x = residual + self.dropout(x)
|
||
|
if not self.normalize_before:
|
||
|
x = self.norm2(x)
|
||
|
|
||
|
residual = x
|
||
|
if self.normalize_before:
|
||
|
x = self.norm3(x)
|
||
|
x = residual + self.dropout(self.feed_forward(x))
|
||
|
if not self.normalize_before:
|
||
|
x = self.norm3(x)
|
||
|
|
||
|
if cache is not None:
|
||
|
x = torch.cat([cache, x], dim=1)
|
||
|
|
||
|
return x, tgt_mask, memory, memory_mask
|
||
|
|
||
|
|
||
|
@tables.register("encoder_classes", "ConvBiasPredictor")
|
||
|
class ConvPredictor(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
size=256,
|
||
|
l_order=3,
|
||
|
r_order=3,
|
||
|
attention_heads=4,
|
||
|
attention_dropout_rate=0.1,
|
||
|
linear_units=2048,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.atten = MultiHeadedAttention(attention_heads, size, attention_dropout_rate)
|
||
|
self.norm1 = LayerNorm(size)
|
||
|
self.feed_forward = PositionwiseFeedForward(size, linear_units, attention_dropout_rate)
|
||
|
self.norm2 = LayerNorm(size)
|
||
|
self.pad = nn.ConstantPad1d((l_order, r_order), 0)
|
||
|
self.conv1d = nn.Conv1d(size, size, l_order + r_order + 1, groups=size)
|
||
|
self.output_linear = nn.Linear(size, 1)
|
||
|
|
||
|
def forward(self, text_enc, asr_enc):
|
||
|
# stage1 cross-attention
|
||
|
residual = text_enc
|
||
|
text_enc = residual + self.atten(text_enc, asr_enc, asr_enc, None)
|
||
|
|
||
|
# stage2 FFN
|
||
|
residual = text_enc
|
||
|
text_enc = self.norm1(text_enc)
|
||
|
text_enc = residual + self.feed_forward(text_enc)
|
||
|
|
||
|
# stage Conv predictor
|
||
|
text_enc = self.norm2(text_enc)
|
||
|
context = text_enc.transpose(1, 2)
|
||
|
queries = self.pad(context)
|
||
|
memory = self.conv1d(queries)
|
||
|
output = memory + context
|
||
|
output = output.transpose(1, 2)
|
||
|
output = torch.relu(output)
|
||
|
output = self.output_linear(output)
|
||
|
if output.dim() == 3:
|
||
|
output = output.squeeze(2)
|
||
|
return output
|