FunASR/funasr/models/e_branchformer/encoder.py

461 lines
17 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
# Copyright 2022 Kwangyoun Kim (ASAPP inc.)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""E-Branchformer encoder definition.
Reference:
Kwangyoun Kim, Felix Wu, Yifan Peng, Jing Pan,
Prashant Sridhar, Kyu J. Han, Shinji Watanabe,
"E-Branchformer: Branchformer with Enhanced merging
for speech recognition," in SLT 2022.
"""
import logging
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from funasr.models.ctc.ctc import CTC
from funasr.models.branchformer.cgmlp import ConvolutionalGatingMLP
from funasr.models.branchformer.fastformer import FastSelfAttention
from funasr.models.transformer.utils.nets_utils import get_activation, make_pad_mask
from funasr.models.transformer.attention import ( # noqa: H301
LegacyRelPositionMultiHeadedAttention,
MultiHeadedAttention,
RelPositionMultiHeadedAttention,
)
from funasr.models.transformer.embedding import ( # noqa: H301
LegacyRelPositionalEncoding,
PositionalEncoding,
RelPositionalEncoding,
ScaledPositionalEncoding,
)
from funasr.models.transformer.layer_norm import LayerNorm
from funasr.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward,
)
from funasr.models.transformer.utils.repeat import repeat
from funasr.models.transformer.utils.subsampling import (
Conv2dSubsampling,
Conv2dSubsampling2,
Conv2dSubsampling6,
Conv2dSubsampling8,
TooShortUttError,
check_short_utt,
)
from funasr.register import tables
class EBranchformerEncoderLayer(torch.nn.Module):
"""E-Branchformer encoder layer module.
Args:
size (int): model dimension
attn: standard self-attention or efficient attention
cgmlp: ConvolutionalGatingMLP
feed_forward: feed-forward module, optional
feed_forward: macaron-style feed-forward module, optional
dropout_rate (float): dropout probability
merge_conv_kernel (int): kernel size of the depth-wise conv in merge module
"""
def __init__(
self,
size: int,
attn: torch.nn.Module,
cgmlp: torch.nn.Module,
feed_forward: Optional[torch.nn.Module],
feed_forward_macaron: Optional[torch.nn.Module],
dropout_rate: float,
merge_conv_kernel: int = 3,
):
super().__init__()
self.size = size
self.attn = attn
self.cgmlp = cgmlp
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.ff_scale = 1.0
if self.feed_forward is not None:
self.norm_ff = LayerNorm(size)
if self.feed_forward_macaron is not None:
self.ff_scale = 0.5
self.norm_ff_macaron = LayerNorm(size)
self.norm_mha = LayerNorm(size) # for the MHA module
self.norm_mlp = LayerNorm(size) # for the MLP module
self.norm_final = LayerNorm(size) # for the final output of the block
self.dropout = torch.nn.Dropout(dropout_rate)
self.depthwise_conv_fusion = torch.nn.Conv1d(
size + size,
size + size,
kernel_size=merge_conv_kernel,
stride=1,
padding=(merge_conv_kernel - 1) // 2,
groups=size + size,
bias=True,
)
self.merge_proj = torch.nn.Linear(size + size, size)
def forward(self, x_input, mask, cache=None):
"""Compute encoded features.
Args:
x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
- w/o pos emb: Tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, 1, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
if cache is not None:
raise NotImplementedError("cache is not None, which is not tested")
if isinstance(x_input, tuple):
x, pos_emb = x_input[0], x_input[1]
else:
x, pos_emb = x_input, None
if self.feed_forward_macaron is not None:
residual = x
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
# Two branches
x1 = x
x2 = x
# Branch 1: multi-headed attention module
x1 = self.norm_mha(x1)
if isinstance(self.attn, FastSelfAttention):
x_att = self.attn(x1, mask)
else:
if pos_emb is not None:
x_att = self.attn(x1, x1, x1, pos_emb, mask)
else:
x_att = self.attn(x1, x1, x1, mask)
x1 = self.dropout(x_att)
# Branch 2: convolutional gating mlp
x2 = self.norm_mlp(x2)
if pos_emb is not None:
x2 = (x2, pos_emb)
x2 = self.cgmlp(x2, mask)
if isinstance(x2, tuple):
x2 = x2[0]
x2 = self.dropout(x2)
# Merge two branches
x_concat = torch.cat([x1, x2], dim=-1)
x_tmp = x_concat.transpose(1, 2)
x_tmp = self.depthwise_conv_fusion(x_tmp)
x_tmp = x_tmp.transpose(1, 2)
x = x + self.dropout(self.merge_proj(x_concat + x_tmp))
if self.feed_forward is not None:
# feed forward module
residual = x
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
x = self.norm_final(x)
if pos_emb is not None:
return (x, pos_emb), mask
return x, mask
@tables.register("encoder_classes", "EBranchformerEncoder")
class EBranchformerEncoder(nn.Module):
"""E-Branchformer encoder module."""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
attention_layer_type: str = "rel_selfattn",
pos_enc_layer_type: str = "rel_pos",
rel_pos_type: str = "latest",
cgmlp_linear_units: int = 2048,
cgmlp_conv_kernel: int = 31,
use_linear_after_conv: bool = False,
gate_activation: str = "identity",
num_blocks: int = 12,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: Optional[str] = "conv2d",
zero_triu: bool = False,
padding_idx: int = -1,
layer_drop_rate: float = 0.0,
max_pos_emb_len: int = 5000,
use_ffn: bool = False,
macaron_ffn: bool = False,
ffn_activation_type: str = "swish",
linear_units: int = 2048,
positionwise_layer_type: str = "linear",
merge_conv_kernel: int = 3,
interctc_layer_idx=None,
interctc_use_conditioning: bool = False,
):
super().__init__()
self._output_size = output_size
if rel_pos_type == "legacy":
if pos_enc_layer_type == "rel_pos":
pos_enc_layer_type = "legacy_rel_pos"
if attention_layer_type == "rel_selfattn":
attention_layer_type = "legacy_rel_selfattn"
elif rel_pos_type == "latest":
assert attention_layer_type != "legacy_rel_selfattn"
assert pos_enc_layer_type != "legacy_rel_pos"
else:
raise ValueError("unknown rel_pos_type: " + rel_pos_type)
if pos_enc_layer_type == "abs_pos":
pos_enc_class = PositionalEncoding
elif pos_enc_layer_type == "scaled_abs_pos":
pos_enc_class = ScaledPositionalEncoding
elif pos_enc_layer_type == "rel_pos":
assert attention_layer_type == "rel_selfattn"
pos_enc_class = RelPositionalEncoding
elif pos_enc_layer_type == "legacy_rel_pos":
assert attention_layer_type == "legacy_rel_selfattn"
pos_enc_class = LegacyRelPositionalEncoding
logging.warning("Using legacy_rel_pos and it will be deprecated in the future.")
else:
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsampling(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "conv2d2":
self.embed = Conv2dSubsampling2(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsampling6(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsampling8(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif isinstance(input_layer, torch.nn.Module):
self.embed = torch.nn.Sequential(
input_layer,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer is None:
if input_size == output_size:
self.embed = None
else:
self.embed = torch.nn.Linear(input_size, output_size)
else:
raise ValueError("unknown input_layer: " + input_layer)
activation = get_activation(ffn_activation_type)
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
elif positionwise_layer_type is None:
logging.warning("no macaron ffn")
else:
raise ValueError("Support only linear.")
if attention_layer_type == "selfattn":
encoder_selfattn_layer = MultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
elif attention_layer_type == "legacy_rel_selfattn":
assert pos_enc_layer_type == "legacy_rel_pos"
encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
logging.warning("Using legacy_rel_selfattn and it will be deprecated in the future.")
elif attention_layer_type == "rel_selfattn":
assert pos_enc_layer_type == "rel_pos"
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
zero_triu,
)
elif attention_layer_type == "fast_selfattn":
assert pos_enc_layer_type in ["abs_pos", "scaled_abs_pos"]
encoder_selfattn_layer = FastSelfAttention
encoder_selfattn_layer_args = (
output_size,
attention_heads,
attention_dropout_rate,
)
else:
raise ValueError("unknown encoder_attn_layer: " + attention_layer_type)
cgmlp_layer = ConvolutionalGatingMLP
cgmlp_layer_args = (
output_size,
cgmlp_linear_units,
cgmlp_conv_kernel,
dropout_rate,
use_linear_after_conv,
gate_activation,
)
self.encoders = repeat(
num_blocks,
lambda lnum: EBranchformerEncoderLayer(
output_size,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
cgmlp_layer(*cgmlp_layer_args),
positionwise_layer(*positionwise_layer_args) if use_ffn else None,
positionwise_layer(*positionwise_layer_args) if use_ffn and macaron_ffn else None,
dropout_rate,
merge_conv_kernel,
),
layer_drop_rate,
)
self.after_norm = LayerNorm(output_size)
if interctc_layer_idx is None:
interctc_layer_idx = []
self.interctc_layer_idx = interctc_layer_idx
if len(interctc_layer_idx) > 0:
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
self.interctc_use_conditioning = interctc_use_conditioning
self.conditioning_layer = None
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
ctc: CTC = None,
max_layer: int = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Calculate forward propagation.
Args:
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
ilens (torch.Tensor): Input length (#batch).
prev_states (torch.Tensor): Not to be used now.
ctc (CTC): Intermediate CTC module.
max_layer (int): Layer depth below which InterCTC is applied.
Returns:
torch.Tensor: Output tensor (#batch, L, output_size).
torch.Tensor: Output length (#batch).
torch.Tensor: Not to be used now.
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
if (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling2)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
elif self.embed is not None:
xs_pad = self.embed(xs_pad)
intermediate_outs = []
if len(self.interctc_layer_idx) == 0:
if max_layer is not None and 0 <= max_layer < len(self.encoders):
for layer_idx, encoder_layer in enumerate(self.encoders):
xs_pad, masks = encoder_layer(xs_pad, masks)
if layer_idx >= max_layer:
break
else:
xs_pad, masks = self.encoders(xs_pad, masks)
else:
for layer_idx, encoder_layer in enumerate(self.encoders):
xs_pad, masks = encoder_layer(xs_pad, masks)
if layer_idx + 1 in self.interctc_layer_idx:
encoder_out = xs_pad
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
intermediate_outs.append((layer_idx + 1, encoder_out))
if self.interctc_use_conditioning:
ctc_out = ctc.softmax(encoder_out)
if isinstance(xs_pad, tuple):
xs_pad = list(xs_pad)
xs_pad[0] = xs_pad[0] + self.conditioning_layer(ctc_out)
xs_pad = tuple(xs_pad)
else:
xs_pad = xs_pad + self.conditioning_layer(ctc_out)
if isinstance(xs_pad, tuple):
xs_pad = xs_pad[0]
xs_pad = self.after_norm(xs_pad)
olens = masks.squeeze(1).sum(1)
if len(intermediate_outs) > 0:
return (xs_pad, intermediate_outs), olens, None
return xs_pad, olens, None