610 lines
24 KiB
Python
610 lines
24 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
#
|
||
|
# This source code is licensed under the MIT license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import logging
|
||
|
import math
|
||
|
from typing import Dict, List, Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from torch import Tensor, nn
|
||
|
from torch.nn import Parameter
|
||
|
|
||
|
from funasr.models.data2vec.quant_noise import quant_noise
|
||
|
|
||
|
|
||
|
class FairseqDropout(nn.Module):
|
||
|
def __init__(self, p, module_name=None):
|
||
|
super().__init__()
|
||
|
self.p = p
|
||
|
self.module_name = module_name
|
||
|
self.apply_during_inference = False
|
||
|
|
||
|
def forward(self, x, inplace: bool = False):
|
||
|
if self.p > 0 and (self.training or self.apply_during_inference):
|
||
|
return F.dropout(x, p=self.p, training=True, inplace=inplace)
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
def make_generation_fast_(
|
||
|
self,
|
||
|
name: str,
|
||
|
retain_dropout: bool = False,
|
||
|
retain_dropout_modules: Optional[List[str]] = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if retain_dropout:
|
||
|
if retain_dropout_modules is not None and self.module_name is None:
|
||
|
logging.warning(
|
||
|
"Cannot enable dropout during inference for module {} "
|
||
|
"because module_name was not set".format(name)
|
||
|
)
|
||
|
elif (
|
||
|
retain_dropout_modules is None # if None, apply to all modules
|
||
|
or self.module_name in retain_dropout_modules
|
||
|
):
|
||
|
logging.info("Enabling dropout during inference for module: {}".format(name))
|
||
|
self.apply_during_inference = True
|
||
|
else:
|
||
|
logging.info("Disabling dropout for module: {}".format(name))
|
||
|
|
||
|
|
||
|
class MultiheadAttention(nn.Module):
|
||
|
"""Multi-headed attention.
|
||
|
|
||
|
See "Attention Is All You Need" for more details.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim,
|
||
|
num_heads,
|
||
|
kdim=None,
|
||
|
vdim=None,
|
||
|
dropout=0.0,
|
||
|
bias=True,
|
||
|
add_bias_kv=False,
|
||
|
add_zero_attn=False,
|
||
|
self_attention=False,
|
||
|
encoder_decoder_attention=False,
|
||
|
q_noise=0.0,
|
||
|
qn_block_size=8,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.kdim = kdim if kdim is not None else embed_dim
|
||
|
self.vdim = vdim if vdim is not None else embed_dim
|
||
|
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||
|
|
||
|
self.num_heads = num_heads
|
||
|
self.dropout_module = FairseqDropout(dropout, module_name=self.__class__.__name__)
|
||
|
|
||
|
self.head_dim = embed_dim // num_heads
|
||
|
assert (
|
||
|
self.head_dim * num_heads == self.embed_dim
|
||
|
), "embed_dim must be divisible by num_heads"
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
|
||
|
self.self_attention = self_attention
|
||
|
self.encoder_decoder_attention = encoder_decoder_attention
|
||
|
|
||
|
assert not self.self_attention or self.qkv_same_dim, (
|
||
|
"Self-attention requires query, key and " "value to be of the same size"
|
||
|
)
|
||
|
|
||
|
self.k_proj = quant_noise(
|
||
|
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
|
||
|
)
|
||
|
self.v_proj = quant_noise(
|
||
|
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
|
||
|
)
|
||
|
self.q_proj = quant_noise(
|
||
|
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
|
||
|
)
|
||
|
|
||
|
self.out_proj = quant_noise(
|
||
|
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
|
||
|
)
|
||
|
|
||
|
if add_bias_kv:
|
||
|
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
|
||
|
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
|
||
|
else:
|
||
|
self.bias_k = self.bias_v = None
|
||
|
|
||
|
self.add_zero_attn = add_zero_attn
|
||
|
|
||
|
self.reset_parameters()
|
||
|
|
||
|
self.onnx_trace = False
|
||
|
self.skip_embed_dim_check = False
|
||
|
|
||
|
def prepare_for_onnx_export_(self):
|
||
|
self.onnx_trace = True
|
||
|
|
||
|
def reset_parameters(self):
|
||
|
if self.qkv_same_dim:
|
||
|
# Empirically observed the convergence to be much better with
|
||
|
# the scaled initialization
|
||
|
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
|
||
|
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
|
||
|
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
|
||
|
else:
|
||
|
nn.init.xavier_uniform_(self.k_proj.weight)
|
||
|
nn.init.xavier_uniform_(self.v_proj.weight)
|
||
|
nn.init.xavier_uniform_(self.q_proj.weight)
|
||
|
|
||
|
nn.init.xavier_uniform_(self.out_proj.weight)
|
||
|
if self.out_proj.bias is not None:
|
||
|
nn.init.constant_(self.out_proj.bias, 0.0)
|
||
|
if self.bias_k is not None:
|
||
|
nn.init.xavier_normal_(self.bias_k)
|
||
|
if self.bias_v is not None:
|
||
|
nn.init.xavier_normal_(self.bias_v)
|
||
|
|
||
|
def _get_reserve_head_index(self, num_heads_to_keep: int):
|
||
|
k_proj_heads_norm = []
|
||
|
q_proj_heads_norm = []
|
||
|
v_proj_heads_norm = []
|
||
|
|
||
|
for i in range(self.num_heads):
|
||
|
start_idx = i * self.head_dim
|
||
|
end_idx = (i + 1) * self.head_dim
|
||
|
k_proj_heads_norm.append(
|
||
|
torch.sum(torch.abs(self.k_proj.weight[start_idx:end_idx,])).tolist()
|
||
|
+ torch.sum(torch.abs(self.k_proj.bias[start_idx:end_idx])).tolist()
|
||
|
)
|
||
|
q_proj_heads_norm.append(
|
||
|
torch.sum(torch.abs(self.q_proj.weight[start_idx:end_idx,])).tolist()
|
||
|
+ torch.sum(torch.abs(self.q_proj.bias[start_idx:end_idx])).tolist()
|
||
|
)
|
||
|
v_proj_heads_norm.append(
|
||
|
torch.sum(torch.abs(self.v_proj.weight[start_idx:end_idx,])).tolist()
|
||
|
+ torch.sum(torch.abs(self.v_proj.bias[start_idx:end_idx])).tolist()
|
||
|
)
|
||
|
|
||
|
heads_norm = []
|
||
|
for i in range(self.num_heads):
|
||
|
heads_norm.append(k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i])
|
||
|
|
||
|
sorted_head_index = sorted(range(self.num_heads), key=lambda k: heads_norm[k], reverse=True)
|
||
|
reserve_head_index = []
|
||
|
for i in range(num_heads_to_keep):
|
||
|
start = sorted_head_index[i] * self.head_dim
|
||
|
end = (sorted_head_index[i] + 1) * self.head_dim
|
||
|
reserve_head_index.append((start, end))
|
||
|
return reserve_head_index
|
||
|
|
||
|
def _adaptive_prune_heads(self, reserve_head_index: List[Tuple[int, int]]):
|
||
|
new_q_weight = []
|
||
|
new_q_bias = []
|
||
|
new_k_weight = []
|
||
|
new_k_bias = []
|
||
|
new_v_weight = []
|
||
|
new_v_bias = []
|
||
|
new_out_proj_weight = []
|
||
|
|
||
|
for ele in reserve_head_index:
|
||
|
start_idx, end_idx = ele
|
||
|
new_q_weight.append(self.q_proj.weight[start_idx:end_idx,])
|
||
|
new_q_bias.append(self.q_proj.bias[start_idx:end_idx])
|
||
|
|
||
|
new_k_weight.append(self.k_proj.weight[start_idx:end_idx,])
|
||
|
|
||
|
new_k_bias.append(self.k_proj.bias[start_idx:end_idx])
|
||
|
|
||
|
new_v_weight.append(self.v_proj.weight[start_idx:end_idx,])
|
||
|
new_v_bias.append(self.v_proj.bias[start_idx:end_idx])
|
||
|
|
||
|
new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])
|
||
|
|
||
|
new_q_weight = torch.cat(new_q_weight).detach()
|
||
|
new_k_weight = torch.cat(new_k_weight).detach()
|
||
|
new_v_weight = torch.cat(new_v_weight).detach()
|
||
|
new_out_proj_weight = torch.cat(new_out_proj_weight, dim=-1).detach()
|
||
|
new_q_weight.requires_grad = True
|
||
|
new_k_weight.requires_grad = True
|
||
|
new_v_weight.requires_grad = True
|
||
|
new_out_proj_weight.requires_grad = True
|
||
|
|
||
|
new_q_bias = torch.cat(new_q_bias).detach()
|
||
|
new_q_bias.requires_grad = True
|
||
|
|
||
|
new_k_bias = torch.cat(new_k_bias).detach()
|
||
|
new_k_bias.requires_grad = True
|
||
|
|
||
|
new_v_bias = torch.cat(new_v_bias).detach()
|
||
|
new_v_bias.requires_grad = True
|
||
|
|
||
|
self.q_proj.weight = torch.nn.Parameter(new_q_weight)
|
||
|
self.q_proj.bias = torch.nn.Parameter(new_q_bias)
|
||
|
|
||
|
self.k_proj.weight = torch.nn.Parameter(new_k_weight)
|
||
|
self.k_proj.bias = torch.nn.Parameter(new_k_bias)
|
||
|
|
||
|
self.v_proj.weight = torch.nn.Parameter(new_v_weight)
|
||
|
self.v_proj.bias = torch.nn.Parameter(new_v_bias)
|
||
|
|
||
|
self.out_proj.weight = torch.nn.Parameter(new_out_proj_weight)
|
||
|
|
||
|
self.num_heads = len(reserve_head_index)
|
||
|
self.embed_dim = self.head_dim * self.num_heads
|
||
|
self.q_proj.out_features = self.embed_dim
|
||
|
self.k_proj.out_features = self.embed_dim
|
||
|
self.v_proj.out_features = self.embed_dim
|
||
|
|
||
|
def _set_skip_embed_dim_check(self):
|
||
|
self.skip_embed_dim_check = True
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
query,
|
||
|
key: Optional[Tensor],
|
||
|
value: Optional[Tensor],
|
||
|
key_padding_mask: Optional[Tensor] = None,
|
||
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
|
||
|
need_weights: bool = True,
|
||
|
static_kv: bool = False,
|
||
|
attn_mask: Optional[Tensor] = None,
|
||
|
before_softmax: bool = False,
|
||
|
need_head_weights: bool = False,
|
||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||
|
"""Input shape: Time x Batch x Channel
|
||
|
|
||
|
Args:
|
||
|
key_padding_mask (ByteTensor, optional): mask to exclude
|
||
|
keys that are pads, of shape `(batch, src_len)`, where
|
||
|
padding elements are indicated by 1s.
|
||
|
need_weights (bool, optional): return the attention weights,
|
||
|
averaged over heads (default: False).
|
||
|
attn_mask (ByteTensor, optional): typically used to
|
||
|
implement causal attention, where the mask prevents the
|
||
|
attention from looking forward in time (default: None).
|
||
|
before_softmax (bool, optional): return the raw attention
|
||
|
weights and values before the attention softmax.
|
||
|
need_head_weights (bool, optional): return the attention
|
||
|
weights for each head. Implies *need_weights*. Default:
|
||
|
return the average attention weights over all heads.
|
||
|
"""
|
||
|
if need_head_weights:
|
||
|
need_weights = True
|
||
|
|
||
|
is_tpu = query.device.type == "xla"
|
||
|
|
||
|
tgt_len, bsz, embed_dim = query.size()
|
||
|
src_len = tgt_len
|
||
|
if not self.skip_embed_dim_check:
|
||
|
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}"
|
||
|
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
||
|
if key is not None:
|
||
|
src_len, key_bsz, _ = key.size()
|
||
|
if not torch.jit.is_scripting():
|
||
|
assert key_bsz == bsz
|
||
|
assert value is not None
|
||
|
assert src_len, bsz == value.shape[:2]
|
||
|
|
||
|
if (
|
||
|
not self.onnx_trace
|
||
|
and not is_tpu # don't use PyTorch version on TPUs
|
||
|
and incremental_state is None
|
||
|
and not static_kv
|
||
|
# A workaround for quantization to work. Otherwise JIT compilation
|
||
|
# treats bias in linear module as method.
|
||
|
and not torch.jit.is_scripting()
|
||
|
# The Multihead attention implemented in pytorch forces strong dimension check
|
||
|
# for input embedding dimention and K,Q,V projection dimension.
|
||
|
# Since pruning will break the dimension check and it is not easy to modify the pytorch API,
|
||
|
# it is preferred to bypass the pytorch MHA when we need to skip embed_dim_check
|
||
|
and not self.skip_embed_dim_check
|
||
|
):
|
||
|
assert key is not None and value is not None
|
||
|
return F.multi_head_attention_forward(
|
||
|
query,
|
||
|
key,
|
||
|
value,
|
||
|
self.embed_dim,
|
||
|
self.num_heads,
|
||
|
torch.empty([0]),
|
||
|
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
|
||
|
self.bias_k,
|
||
|
self.bias_v,
|
||
|
self.add_zero_attn,
|
||
|
self.dropout_module.p,
|
||
|
self.out_proj.weight,
|
||
|
self.out_proj.bias,
|
||
|
self.training or self.dropout_module.apply_during_inference,
|
||
|
key_padding_mask,
|
||
|
need_weights,
|
||
|
attn_mask,
|
||
|
use_separate_proj_weight=True,
|
||
|
q_proj_weight=self.q_proj.weight,
|
||
|
k_proj_weight=self.k_proj.weight,
|
||
|
v_proj_weight=self.v_proj.weight,
|
||
|
)
|
||
|
|
||
|
if incremental_state is not None:
|
||
|
saved_state = self._get_input_buffer(incremental_state)
|
||
|
if saved_state is not None and "prev_key" in saved_state:
|
||
|
# previous time steps are cached - no need to recompute
|
||
|
# key and value if they are static
|
||
|
if static_kv:
|
||
|
assert self.encoder_decoder_attention and not self.self_attention
|
||
|
key = value = None
|
||
|
else:
|
||
|
saved_state = None
|
||
|
|
||
|
if self.self_attention:
|
||
|
q = self.q_proj(query)
|
||
|
k = self.k_proj(query)
|
||
|
v = self.v_proj(query)
|
||
|
elif self.encoder_decoder_attention:
|
||
|
# encoder-decoder attention
|
||
|
q = self.q_proj(query)
|
||
|
if key is None:
|
||
|
assert value is None
|
||
|
k = v = None
|
||
|
else:
|
||
|
k = self.k_proj(key)
|
||
|
v = self.v_proj(key)
|
||
|
|
||
|
else:
|
||
|
assert key is not None and value is not None
|
||
|
q = self.q_proj(query)
|
||
|
k = self.k_proj(key)
|
||
|
v = self.v_proj(value)
|
||
|
q *= self.scaling
|
||
|
|
||
|
if self.bias_k is not None:
|
||
|
assert self.bias_v is not None
|
||
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
||
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
||
|
if attn_mask is not None:
|
||
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
|
||
|
if key_padding_mask is not None:
|
||
|
key_padding_mask = torch.cat(
|
||
|
[
|
||
|
key_padding_mask,
|
||
|
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
|
||
|
],
|
||
|
dim=1,
|
||
|
)
|
||
|
|
||
|
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
||
|
if k is not None:
|
||
|
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
||
|
if v is not None:
|
||
|
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
||
|
|
||
|
if saved_state is not None:
|
||
|
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
|
||
|
if "prev_key" in saved_state:
|
||
|
_prev_key = saved_state["prev_key"]
|
||
|
assert _prev_key is not None
|
||
|
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
|
||
|
if static_kv:
|
||
|
k = prev_key
|
||
|
else:
|
||
|
assert k is not None
|
||
|
k = torch.cat([prev_key, k], dim=1)
|
||
|
src_len = k.size(1)
|
||
|
if "prev_value" in saved_state:
|
||
|
_prev_value = saved_state["prev_value"]
|
||
|
assert _prev_value is not None
|
||
|
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
|
||
|
if static_kv:
|
||
|
v = prev_value
|
||
|
else:
|
||
|
assert v is not None
|
||
|
v = torch.cat([prev_value, v], dim=1)
|
||
|
prev_key_padding_mask: Optional[Tensor] = None
|
||
|
if "prev_key_padding_mask" in saved_state:
|
||
|
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
|
||
|
assert k is not None and v is not None
|
||
|
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
|
||
|
key_padding_mask=key_padding_mask,
|
||
|
prev_key_padding_mask=prev_key_padding_mask,
|
||
|
batch_size=bsz,
|
||
|
src_len=k.size(1),
|
||
|
static_kv=static_kv,
|
||
|
)
|
||
|
|
||
|
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
|
||
|
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
|
||
|
saved_state["prev_key_padding_mask"] = key_padding_mask
|
||
|
# In this branch incremental_state is never None
|
||
|
assert incremental_state is not None
|
||
|
incremental_state = self._set_input_buffer(incremental_state, saved_state)
|
||
|
assert k is not None
|
||
|
assert k.size(1) == src_len
|
||
|
|
||
|
# This is part of a workaround to get around fork/join parallelism
|
||
|
# not supporting Optional types.
|
||
|
if key_padding_mask is not None and key_padding_mask.dim() == 0:
|
||
|
key_padding_mask = None
|
||
|
|
||
|
if key_padding_mask is not None:
|
||
|
assert key_padding_mask.size(0) == bsz
|
||
|
assert key_padding_mask.size(1) == src_len
|
||
|
|
||
|
if self.add_zero_attn:
|
||
|
assert v is not None
|
||
|
src_len += 1
|
||
|
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
|
||
|
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
|
||
|
if attn_mask is not None:
|
||
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
|
||
|
if key_padding_mask is not None:
|
||
|
key_padding_mask = torch.cat(
|
||
|
[
|
||
|
key_padding_mask,
|
||
|
torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask),
|
||
|
],
|
||
|
dim=1,
|
||
|
)
|
||
|
|
||
|
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
||
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
|
||
|
|
||
|
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
||
|
|
||
|
if attn_mask is not None:
|
||
|
attn_mask = attn_mask.unsqueeze(0)
|
||
|
if self.onnx_trace:
|
||
|
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
|
||
|
attn_weights += attn_mask
|
||
|
|
||
|
if key_padding_mask is not None:
|
||
|
# don't attend to padding symbols
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
if not is_tpu:
|
||
|
attn_weights = attn_weights.masked_fill(
|
||
|
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
||
|
float("-inf"),
|
||
|
)
|
||
|
else:
|
||
|
attn_weights = attn_weights.transpose(0, 2)
|
||
|
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
|
||
|
attn_weights = attn_weights.transpose(0, 2)
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
if before_softmax:
|
||
|
return attn_weights, v
|
||
|
|
||
|
attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
||
|
attn_weights = attn_weights_float.type_as(attn_weights)
|
||
|
attn_probs = self.dropout_module(attn_weights)
|
||
|
|
||
|
assert v is not None
|
||
|
attn = torch.bmm(attn_probs, v)
|
||
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
||
|
if self.onnx_trace and attn.size(1) == 1:
|
||
|
# when ONNX tracing a single decoder step (sequence length == 1)
|
||
|
# the transpose is a no-op copy before view, thus unnecessary
|
||
|
attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
|
||
|
else:
|
||
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
|
||
|
attn = self.out_proj(attn)
|
||
|
attn_weights: Optional[Tensor] = None
|
||
|
if need_weights:
|
||
|
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(
|
||
|
1, 0
|
||
|
)
|
||
|
if not need_head_weights:
|
||
|
# average attention weights over heads
|
||
|
attn_weights = attn_weights.mean(dim=0)
|
||
|
|
||
|
return attn, attn_weights
|
||
|
|
||
|
@staticmethod
|
||
|
def _append_prev_key_padding_mask(
|
||
|
key_padding_mask: Optional[Tensor],
|
||
|
prev_key_padding_mask: Optional[Tensor],
|
||
|
batch_size: int,
|
||
|
src_len: int,
|
||
|
static_kv: bool,
|
||
|
) -> Optional[Tensor]:
|
||
|
# saved key padding masks have shape (bsz, seq_len)
|
||
|
if prev_key_padding_mask is not None and static_kv:
|
||
|
new_key_padding_mask = prev_key_padding_mask
|
||
|
elif prev_key_padding_mask is not None and key_padding_mask is not None:
|
||
|
new_key_padding_mask = torch.cat(
|
||
|
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
|
||
|
)
|
||
|
# During incremental decoding, as the padding token enters and
|
||
|
# leaves the frame, there will be a time when prev or current
|
||
|
# is None
|
||
|
elif prev_key_padding_mask is not None:
|
||
|
if src_len > prev_key_padding_mask.size(1):
|
||
|
filler = torch.zeros(
|
||
|
(batch_size, src_len - prev_key_padding_mask.size(1)),
|
||
|
device=prev_key_padding_mask.device,
|
||
|
)
|
||
|
new_key_padding_mask = torch.cat(
|
||
|
[prev_key_padding_mask.float(), filler.float()], dim=1
|
||
|
)
|
||
|
else:
|
||
|
new_key_padding_mask = prev_key_padding_mask.float()
|
||
|
elif key_padding_mask is not None:
|
||
|
if src_len > key_padding_mask.size(1):
|
||
|
filler = torch.zeros(
|
||
|
(batch_size, src_len - key_padding_mask.size(1)),
|
||
|
device=key_padding_mask.device,
|
||
|
)
|
||
|
new_key_padding_mask = torch.cat([filler.float(), key_padding_mask.float()], dim=1)
|
||
|
else:
|
||
|
new_key_padding_mask = key_padding_mask.float()
|
||
|
else:
|
||
|
new_key_padding_mask = prev_key_padding_mask
|
||
|
return new_key_padding_mask
|
||
|
|
||
|
@torch.jit.export
|
||
|
def reorder_incremental_state(
|
||
|
self,
|
||
|
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
|
||
|
new_order: Tensor,
|
||
|
):
|
||
|
"""Reorder buffered internal state (for incremental generation)."""
|
||
|
input_buffer = self._get_input_buffer(incremental_state)
|
||
|
if input_buffer is not None:
|
||
|
for k in input_buffer.keys():
|
||
|
input_buffer_k = input_buffer[k]
|
||
|
if input_buffer_k is not None:
|
||
|
if self.encoder_decoder_attention and input_buffer_k.size(0) == new_order.size(
|
||
|
0
|
||
|
):
|
||
|
break
|
||
|
input_buffer[k] = input_buffer_k.index_select(0, new_order)
|
||
|
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
|
||
|
return incremental_state
|
||
|
|
||
|
def _get_input_buffer(
|
||
|
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
|
||
|
) -> Dict[str, Optional[Tensor]]:
|
||
|
result = self.get_incremental_state(incremental_state, "attn_state")
|
||
|
if result is not None:
|
||
|
return result
|
||
|
else:
|
||
|
empty_result: Dict[str, Optional[Tensor]] = {}
|
||
|
return empty_result
|
||
|
|
||
|
def _set_input_buffer(
|
||
|
self,
|
||
|
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
|
||
|
buffer: Dict[str, Optional[Tensor]],
|
||
|
):
|
||
|
return self.set_incremental_state(incremental_state, "attn_state", buffer)
|
||
|
|
||
|
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
|
||
|
return attn_weights
|
||
|
|
||
|
def upgrade_state_dict_named(self, state_dict, name):
|
||
|
prefix = name + "." if name != "" else ""
|
||
|
items_to_add = {}
|
||
|
keys_to_remove = []
|
||
|
for k in state_dict.keys():
|
||
|
if k.endswith(prefix + "in_proj_weight"):
|
||
|
# in_proj_weight used to be q + k + v with same dimensions
|
||
|
dim = int(state_dict[k].shape[0] / 3)
|
||
|
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
|
||
|
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
|
||
|
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
|
||
|
|
||
|
keys_to_remove.append(k)
|
||
|
|
||
|
k_bias = prefix + "in_proj_bias"
|
||
|
if k_bias in state_dict.keys():
|
||
|
dim = int(state_dict[k].shape[0] / 3)
|
||
|
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
|
||
|
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][dim : 2 * dim]
|
||
|
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
|
||
|
|
||
|
keys_to_remove.append(prefix + "in_proj_bias")
|
||
|
|
||
|
for k in keys_to_remove:
|
||
|
del state_dict[k]
|
||
|
|
||
|
for key, value in items_to_add.items():
|
||
|
state_dict[key] = value
|