289 lines
9.4 KiB
Python
289 lines
9.4 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||
|
# MIT License (https://opensource.org/licenses/MIT)
|
||
|
# Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker)
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import torch.utils.checkpoint as cp
|
||
|
|
||
|
|
||
|
class BasicResBlock(torch.nn.Module):
|
||
|
expansion = 1
|
||
|
|
||
|
def __init__(self, in_planes, planes, stride=1):
|
||
|
super(BasicResBlock, self).__init__()
|
||
|
self.conv1 = torch.nn.Conv2d(
|
||
|
in_planes, planes, kernel_size=3, stride=(stride, 1), padding=1, bias=False
|
||
|
)
|
||
|
self.bn1 = torch.nn.BatchNorm2d(planes)
|
||
|
self.conv2 = torch.nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.bn2 = torch.nn.BatchNorm2d(planes)
|
||
|
|
||
|
self.shortcut = torch.nn.Sequential()
|
||
|
if stride != 1 or in_planes != self.expansion * planes:
|
||
|
self.shortcut = torch.nn.Sequential(
|
||
|
torch.nn.Conv2d(
|
||
|
in_planes,
|
||
|
self.expansion * planes,
|
||
|
kernel_size=1,
|
||
|
stride=(stride, 1),
|
||
|
bias=False,
|
||
|
),
|
||
|
torch.nn.BatchNorm2d(self.expansion * planes),
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = F.relu(self.bn1(self.conv1(x)))
|
||
|
out = self.bn2(self.conv2(out))
|
||
|
out += self.shortcut(x)
|
||
|
out = F.relu(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class FCM(torch.nn.Module):
|
||
|
def __init__(self, block=BasicResBlock, num_blocks=[2, 2], m_channels=32, feat_dim=80):
|
||
|
super(FCM, self).__init__()
|
||
|
self.in_planes = m_channels
|
||
|
self.conv1 = torch.nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.bn1 = torch.nn.BatchNorm2d(m_channels)
|
||
|
|
||
|
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
|
||
|
self.layer2 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
|
||
|
|
||
|
self.conv2 = torch.nn.Conv2d(
|
||
|
m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False
|
||
|
)
|
||
|
self.bn2 = torch.nn.BatchNorm2d(m_channels)
|
||
|
self.out_channels = m_channels * (feat_dim // 8)
|
||
|
|
||
|
def _make_layer(self, block, planes, num_blocks, stride):
|
||
|
strides = [stride] + [1] * (num_blocks - 1)
|
||
|
layers = []
|
||
|
for stride in strides:
|
||
|
layers.append(block(self.in_planes, planes, stride))
|
||
|
self.in_planes = planes * block.expansion
|
||
|
return torch.nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = x.unsqueeze(1)
|
||
|
out = F.relu(self.bn1(self.conv1(x)))
|
||
|
out = self.layer1(out)
|
||
|
out = self.layer2(out)
|
||
|
out = F.relu(self.bn2(self.conv2(out)))
|
||
|
|
||
|
shape = out.shape
|
||
|
out = out.reshape(shape[0], shape[1] * shape[2], shape[3])
|
||
|
return out
|
||
|
|
||
|
|
||
|
def get_nonlinear(config_str, channels):
|
||
|
nonlinear = torch.nn.Sequential()
|
||
|
for name in config_str.split("-"):
|
||
|
if name == "relu":
|
||
|
nonlinear.add_module("relu", torch.nn.ReLU(inplace=True))
|
||
|
elif name == "prelu":
|
||
|
nonlinear.add_module("prelu", torch.nn.PReLU(channels))
|
||
|
elif name == "batchnorm":
|
||
|
nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels))
|
||
|
elif name == "batchnorm_":
|
||
|
nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels, affine=False))
|
||
|
else:
|
||
|
raise ValueError("Unexpected module ({}).".format(name))
|
||
|
return nonlinear
|
||
|
|
||
|
|
||
|
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2):
|
||
|
mean = x.mean(dim=dim)
|
||
|
std = x.std(dim=dim, unbiased=unbiased)
|
||
|
stats = torch.cat([mean, std], dim=-1)
|
||
|
if keepdim:
|
||
|
stats = stats.unsqueeze(dim=dim)
|
||
|
return stats
|
||
|
|
||
|
|
||
|
class StatsPool(torch.nn.Module):
|
||
|
def forward(self, x):
|
||
|
return statistics_pooling(x)
|
||
|
|
||
|
|
||
|
class TDNNLayer(torch.nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
dilation=1,
|
||
|
bias=False,
|
||
|
config_str="batchnorm-relu",
|
||
|
):
|
||
|
super(TDNNLayer, self).__init__()
|
||
|
if padding < 0:
|
||
|
assert (
|
||
|
kernel_size % 2 == 1
|
||
|
), "Expect equal paddings, but got even kernel size ({})".format(kernel_size)
|
||
|
padding = (kernel_size - 1) // 2 * dilation
|
||
|
self.linear = torch.nn.Conv1d(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
bias=bias,
|
||
|
)
|
||
|
self.nonlinear = get_nonlinear(config_str, out_channels)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.linear(x)
|
||
|
x = self.nonlinear(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class CAMLayer(torch.nn.Module):
|
||
|
def __init__(
|
||
|
self, bn_channels, out_channels, kernel_size, stride, padding, dilation, bias, reduction=2
|
||
|
):
|
||
|
super(CAMLayer, self).__init__()
|
||
|
self.linear_local = torch.nn.Conv1d(
|
||
|
bn_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
bias=bias,
|
||
|
)
|
||
|
self.linear1 = torch.nn.Conv1d(bn_channels, bn_channels // reduction, 1)
|
||
|
self.relu = torch.nn.ReLU(inplace=True)
|
||
|
self.linear2 = torch.nn.Conv1d(bn_channels // reduction, out_channels, 1)
|
||
|
self.sigmoid = torch.nn.Sigmoid()
|
||
|
|
||
|
def forward(self, x):
|
||
|
y = self.linear_local(x)
|
||
|
context = x.mean(-1, keepdim=True) + self.seg_pooling(x)
|
||
|
context = self.relu(self.linear1(context))
|
||
|
m = self.sigmoid(self.linear2(context))
|
||
|
return y * m
|
||
|
|
||
|
def seg_pooling(self, x, seg_len=100, stype="avg"):
|
||
|
if stype == "avg":
|
||
|
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
|
||
|
elif stype == "max":
|
||
|
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
|
||
|
else:
|
||
|
raise ValueError("Wrong segment pooling type.")
|
||
|
shape = seg.shape
|
||
|
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1)
|
||
|
seg = seg[..., : x.shape[-1]]
|
||
|
return seg
|
||
|
|
||
|
|
||
|
class CAMDenseTDNNLayer(torch.nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
bn_channels,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
dilation=1,
|
||
|
bias=False,
|
||
|
config_str="batchnorm-relu",
|
||
|
memory_efficient=False,
|
||
|
):
|
||
|
super(CAMDenseTDNNLayer, self).__init__()
|
||
|
assert kernel_size % 2 == 1, "Expect equal paddings, but got even kernel size ({})".format(
|
||
|
kernel_size
|
||
|
)
|
||
|
padding = (kernel_size - 1) // 2 * dilation
|
||
|
self.memory_efficient = memory_efficient
|
||
|
self.nonlinear1 = get_nonlinear(config_str, in_channels)
|
||
|
self.linear1 = torch.nn.Conv1d(in_channels, bn_channels, 1, bias=False)
|
||
|
self.nonlinear2 = get_nonlinear(config_str, bn_channels)
|
||
|
self.cam_layer = CAMLayer(
|
||
|
bn_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
bias=bias,
|
||
|
)
|
||
|
|
||
|
def bn_function(self, x):
|
||
|
return self.linear1(self.nonlinear1(x))
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self.training and self.memory_efficient:
|
||
|
x = cp.checkpoint(self.bn_function, x)
|
||
|
else:
|
||
|
x = self.bn_function(x)
|
||
|
x = self.cam_layer(self.nonlinear2(x))
|
||
|
return x
|
||
|
|
||
|
|
||
|
class CAMDenseTDNNBlock(torch.nn.ModuleList):
|
||
|
def __init__(
|
||
|
self,
|
||
|
num_layers,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
bn_channels,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
dilation=1,
|
||
|
bias=False,
|
||
|
config_str="batchnorm-relu",
|
||
|
memory_efficient=False,
|
||
|
):
|
||
|
super(CAMDenseTDNNBlock, self).__init__()
|
||
|
for i in range(num_layers):
|
||
|
layer = CAMDenseTDNNLayer(
|
||
|
in_channels=in_channels + i * out_channels,
|
||
|
out_channels=out_channels,
|
||
|
bn_channels=bn_channels,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
dilation=dilation,
|
||
|
bias=bias,
|
||
|
config_str=config_str,
|
||
|
memory_efficient=memory_efficient,
|
||
|
)
|
||
|
self.add_module("tdnnd%d" % (i + 1), layer)
|
||
|
|
||
|
def forward(self, x):
|
||
|
for layer in self:
|
||
|
x = torch.cat([x, layer(x)], dim=1)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class TransitLayer(torch.nn.Module):
|
||
|
def __init__(self, in_channels, out_channels, bias=True, config_str="batchnorm-relu"):
|
||
|
super(TransitLayer, self).__init__()
|
||
|
self.nonlinear = get_nonlinear(config_str, in_channels)
|
||
|
self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.nonlinear(x)
|
||
|
x = self.linear(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class DenseLayer(torch.nn.Module):
|
||
|
def __init__(self, in_channels, out_channels, bias=False, config_str="batchnorm-relu"):
|
||
|
super(DenseLayer, self).__init__()
|
||
|
self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias)
|
||
|
self.nonlinear = get_nonlinear(config_str, out_channels)
|
||
|
|
||
|
def forward(self, x):
|
||
|
if len(x.shape) == 2:
|
||
|
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
|
||
|
else:
|
||
|
x = self.linear(x)
|
||
|
x = self.nonlinear(x)
|
||
|
return x
|