FunASR/funasr/models/bicif_paraformer/model.py

378 lines
14 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import copy
import time
import torch
import logging
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict, List, Optional, Tuple
from funasr.register import tables
from funasr.models.ctc.ctc import CTC
from funasr.utils import postprocess_utils
from funasr.metrics.compute_acc import th_accuracy
from funasr.utils.datadir_writer import DatadirWriter
from funasr.models.paraformer.model import Paraformer
from funasr.models.paraformer.search import Hypothesis
from funasr.train_utils.device_funcs import force_gatherable
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr.train_utils.device_funcs import to_device
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
@tables.register("model_classes", "BiCifParaformer")
class BiCifParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paper1: FunASR: A Fundamental End-to-End Speech Recognition Toolkit
https://arxiv.org/abs/2305.11013
Paper2: Achieving timestamp prediction while recognizing with non-autoregressive end-to-end ASR model
https://arxiv.org/abs/2301.12343
"""
def __init__(
self,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
def _calc_pre2_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
_, _, _, _, pre_token_length2 = self.predictor(
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
)
# loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2)
return loss_pre2
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor(
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
)
# 0. sampler
decoder_out_1st = None
if self.sampling_ratio > 0.0:
sematic_embeds, decoder_out_1st = self.sampler(
encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds
)
else:
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = (
self.predictor(encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id)
)
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(
encoder_out, encoder_out_mask, token_num
)
return ds_alphas, ds_cif_peak, us_alphas, us_peaks
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
loss_ctc, cer_ctc = None, None
loss_pre = None
stats = dict()
# decoder: CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# decoder: Attention decoder branch
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss_pre2 = self._calc_pre2_loss(encoder_out, encoder_out_lens, text, text_lengths)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = (
loss_att
+ loss_pre * self.predictor_weight
+ loss_pre2 * self.predictor_weight * 0.5
)
else:
loss = (
self.ctc_weight * loss_ctc
+ (1 - self.ctc_weight) * loss_att
+ loss_pre * self.predictor_weight
+ loss_pre2 * self.predictor_weight * 0.5
)
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss_pre2"] = loss_pre2.detach().cpu()
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((text_lengths + self.predictor_bias).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
# init beamsearch
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
is_use_lm = (
kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
)
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
# if isinstance(data_in, torch.Tensor): # fbank
# speech, speech_lengths = data_in, data_lengths
# if len(speech.shape) < 3:
# speech = speech[None, :, :]
# if speech_lengths is None:
# speech_lengths = speech.shape[1]
# else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(
data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000)
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = (
predictor_outs[0],
predictor_outs[1],
predictor_outs[2],
predictor_outs[3],
)
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
decoder_outs = self.cal_decoder_with_predictor(
encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length
)
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
# BiCifParaformer, test no bias cif2
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp(
encoder_out, encoder_out_lens, pre_token_length
)
results = []
b, n, d = decoder_out.size()
for i in range(b):
x = encoder_out[i, : encoder_out_lens[i], :]
am_scores = decoder_out[i, : pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x,
am_scores=am_scores,
maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0),
)
nbest_hyps = nbest_hyps[: self.nbest]
else:
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{nbest_idx+1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(
lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int
)
)
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
_, timestamp = ts_prediction_lfr6_standard(
us_alphas[i][: encoder_out_lens[i] * 3],
us_peaks[i][: encoder_out_lens[i] * 3],
copy.copy(token),
vad_offset=kwargs.get("begin_time", 0),
)
text_postprocessed, time_stamp_postprocessed, word_lists = (
postprocess_utils.sentence_postprocess(token, timestamp)
)
result_i = {
"key": key[i],
"text": text_postprocessed,
"timestamp": time_stamp_postprocessed,
}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
# ibest_writer["text"][key[i]] = text
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
ibest_writer["text"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data
def export(self, **kwargs):
from .export_meta import export_rebuild_model
if "max_seq_len" not in kwargs:
kwargs["max_seq_len"] = 512
models = export_rebuild_model(model=self, **kwargs)
return models