FunASR/funasr/datasets/sense_voice_datasets/datasets.py

233 lines
8.3 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
import logging
import torch
import random
import traceback
from funasr.register import tables
from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video
@tables.register("dataset_classes", "SenseVoiceDataset")
class SenseVoiceDataset(torch.utils.data.Dataset):
"""
SenseVoiceDataset
"""
def __init__(
self,
path,
index_ds: str = None,
frontend=None,
tokenizer=None,
int_pad_value: int = -1,
float_pad_value: float = 0.0,
**kwargs,
):
super().__init__()
index_ds_class = tables.index_ds_classes.get(index_ds)
self.index_ds = index_ds_class(path, **kwargs)
preprocessor_speech = kwargs.get("preprocessor_speech", None)
if preprocessor_speech:
preprocessor_speech_class = tables.preprocessor_classes.get(preprocessor_speech)
preprocessor_speech = preprocessor_speech_class(
**kwargs.get("preprocessor_speech_conf")
)
self.preprocessor_speech = preprocessor_speech
preprocessor_text = kwargs.get("preprocessor_text", None)
if preprocessor_text:
preprocessor_text_class = tables.preprocessor_classes.get(preprocessor_text)
preprocessor_text = preprocessor_text_class(**kwargs.get("preprocessor_text_conf"))
self.preprocessor_text = preprocessor_text
self.frontend = frontend
self.fs = 16000 if frontend is None else frontend.fs
self.data_type = "sound"
self.tokenizer = tokenizer
self.int_pad_value = int_pad_value
self.float_pad_value = float_pad_value
self.sos = kwargs.get("sos", "<|startoftranscript|>")
self.eos = kwargs.get("eos", "<|endoftext|>")
self.batch_size = kwargs.get("batch_size")
self.batch_type = kwargs.get("batch_type")
self.prompt_ids_len = 0
self.retry = kwargs.get("retry", 5)
self.permute = False
from funasr.frontends.whisper_frontend import WhisperFrontend
if isinstance(self.frontend, WhisperFrontend):
self.permute = True
def get_source_len(self, index):
item = self.index_ds[index]
return self.index_ds.get_source_len(item)
def get_target_len(self, index):
item = self.index_ds[index]
return self.index_ds.get_target_len(item)
def __len__(self):
return len(self.index_ds)
def __getitem__(self, index):
# import pdb;
# pdb.set_trace()
output = None
for idx in range(self.retry):
if idx == 0:
index_cur = index
else:
index_cur = torch.randint(0, len(self.index_ds), ()).item()
item = self.index_ds[index_cur]
source = item["source"]
try:
data_src = load_audio_text_image_video(source, fs=self.fs)
except Exception as e:
logging.error(f"Loading wav failed! {str(e)}, {traceback.format_exc()}")
continue
if self.preprocessor_speech:
data_src = self.preprocessor_speech(data_src, fs=self.fs)
speech, speech_lengths = extract_fbank(
data_src, data_type=self.data_type, frontend=self.frontend, is_final=True
) # speech: [b, T, d]
if speech_lengths > self.batch_size:
continue
if self.permute:
speech = speech.permute(0, 2, 1)
target = item["target"]
if self.preprocessor_text:
target = self.preprocessor_text(target)
task = item.get("prompt", "<|ASR|>")
text_language = item.get("text_language", "<|zh|>")
if isinstance(self.sos, str):
prompt = f"{self.sos}{task}{text_language}"
prompt_ids = self.tokenizer.encode(prompt, allowed_special="all")
else:
prompt = f"{task}{text_language}"
prompt_ids = self.tokenizer.encode(prompt, allowed_special="all")
prompt_ids = [self.sos] + prompt_ids
prompt_ids_len = len(prompt_ids) - 1 # [sos, task]
self.prompt_ids_len = prompt_ids_len
target_ids = self.tokenizer.encode(target, allowed_special="all")
target_ids_len = len(target_ids) + 1 # [lid, text]
if target_ids_len > 200:
continue
if isinstance(self.eos, str):
eos = self.tokenizer.encode(self.eos, allowed_special="all") # [eos]
else:
eos = [self.eos]
ids = prompt_ids + target_ids + eos # [sos, task, lid, text, eos]
ids_lengths = len(ids)
text = torch.tensor(ids, dtype=torch.int64)
text_lengths = torch.tensor([ids_lengths], dtype=torch.int32)
target_mask = (
[0] * (prompt_ids_len) + [1] * (target_ids_len) + [1]
) # [sos, task, lid, text, eos]: [0, 0, 1, 1, 1]
target_mask_lengths = len(target_mask)
target_mask = torch.tensor(target_mask, dtype=torch.float32)
target_mask_lengths = torch.tensor([target_mask_lengths], dtype=torch.int32)
output = {
"speech": speech[0, :, :],
"speech_lengths": speech_lengths,
"text": text,
"text_lengths": text_lengths,
"target_mask": target_mask,
"target_mask_lengths": target_mask_lengths,
}
break
return output
def collator(self, samples: list = None):
outputs = {}
for sample in samples:
if sample is None:
continue
for key in sample.keys():
if key not in outputs:
outputs[key] = []
outputs[key].append(sample[key])
if len(outputs) < 1:
logging.error(f"ERROR: data is empty!")
outputs = {
"speech": torch.rand((10, 128), dtype=torch.float32)[None, :, :],
"speech_lengths": torch.tensor(
[
10,
],
dtype=torch.int32,
)[:, None],
"text": torch.tensor(
[
58836,
],
dtype=torch.int32,
)[None, :],
"text_lengths": torch.tensor(
[
1,
],
dtype=torch.int32,
)[:, None],
"target_mask": torch.tensor([[0] * (self.prompt_ids_len) + [1] * (1) + [1]])[
None, :
],
}
return outputs
for key, data_list in outputs.items():
if isinstance(data_list[0], torch.Tensor):
if data_list[0].dtype == torch.int64 or data_list[0].dtype == torch.int32:
pad_value = self.int_pad_value
else:
pad_value = self.float_pad_value
outputs[key] = torch.nn.utils.rnn.pad_sequence(
data_list, batch_first=True, padding_value=pad_value
)
if self.batch_type != "example":
for i in range(10):
outputs = self._filter_badcase(outputs, i=i)
return outputs
def _filter_badcase(self, outputs, i=0):
b, t, _ = outputs["speech"].shape
if b * t > self.batch_size * 1.25:
beg = torch.randint(0, 2, ()).item()
if b < 2:
beg = 0
logging.info(
f"Warning, b * t: {b * t} > {self.batch_size}, drop half data {i}th, beg:{beg}"
)
for key, data_list in outputs.items():
outputs[key] = outputs[key][beg : beg + b : 2]
speech_lengths_max = outputs["speech_lengths"].max().item()
outputs["speech"] = outputs["speech"][:, :speech_lengths_max, :]
text_lengths_max = outputs["text_lengths"].max().item()
outputs["text"] = outputs["text"][:, :text_lengths_max]
target_mask_lengths_max = outputs["target_mask_lengths"].max().item()
outputs["target_mask"] = outputs["target_mask"][:, :target_mask_lengths_max]
return outputs