FunASR/funasr/datasets/large_datasets/utils/tokenize.py

94 lines
3.0 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
#!/usr/bin/env python
import re
import numpy as np
from funasr.datasets.large_datasets.utils.hotword_utils import sample_hotword
def forward_segment(text, seg_dict):
word_list = []
i = 0
while i < len(text):
longest_word = text[i]
for j in range(i + 1, len(text) + 1):
word = text[i:j]
if word in seg_dict:
if len(word) > len(longest_word):
longest_word = word
word_list.append(longest_word)
i += len(longest_word)
return word_list
def seg_tokenize(txt, seg_dict):
pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$")
out_txt = ""
for word in txt:
word = word.lower()
if word in seg_dict:
out_txt += seg_dict[word] + " "
else:
if pattern.match(word):
for char in word:
if char in seg_dict:
out_txt += seg_dict[char] + " "
else:
out_txt += "<unk>" + " "
else:
out_txt += "<unk>" + " "
return out_txt.strip().split()
def tokenize(data, vocab=None, seg_dict=None, punc_dict=None, bpe_tokenizer=None, hw_config=None):
assert "text" in data
assert isinstance(vocab, dict)
text = data["text"]
token = []
vad = -2
if bpe_tokenizer is not None:
text = bpe_tokenizer.text2tokens(" ".join(text))
if seg_dict is not None:
assert isinstance(seg_dict, dict)
text = seg_tokenize(text, seg_dict)
length = len(text)
if "hw_tag" in data:
pre_index = None
if hw_config["pre_hwlist"] is not None and hw_config["pre_prob"] > 0:
# enable preset hotword detect in sampling
for hw in hw_config["pre_hwlist"]:
hw = " ".join(seg_tokenize(hw, seg_dict))
_find = " ".join(text).find(hw)
if _find != -1:
# _find = text[:_find].count(" ") # bpe sometimes
pre_index = [_find, _find + max(hw.count(" "), 1)]
break
hotword_indxs = sample_hotword(length, **hw_config, pre_index=pre_index)
data["hotword_indxs"] = hotword_indxs
del data["hw_tag"]
for i in range(length):
x = text[i]
if i == length - 1 and "punc" in data and x.startswith("vad:"):
vad = x[4:]
if len(vad) == 0:
vad = -1
else:
vad = int(vad)
elif x in vocab:
token.append(vocab[x])
else:
token.append(vocab["<unk>"])
if "punc" in data and punc_dict is not None:
punc_token = []
for punc in data["punc"]:
if punc in punc_dict:
punc_token.append(punc_dict[punc])
else:
punc_token.append(punc_dict["_"])
data["punc"] = np.array(punc_token)
data["text"] = np.array(token)
if vad is not -2:
data["vad_indexes"] = np.array([vad], dtype=np.int64)
return data