31 lines
959 B
Python
31 lines
959 B
Python
|
import numpy as np
|
||
|
|
||
|
|
||
|
def build_LFR_features(data, m, n):
|
||
|
"""
|
||
|
Actually, this implements stacking frames and skipping frames.
|
||
|
if m = 1 and n = 1, just return the origin features.
|
||
|
if m = 1 and n > 1, it works like skipping.
|
||
|
if m > 1 and n = 1, it works like stacking but only support right frames.
|
||
|
if m > 1 and n > 1, it works like LFR.
|
||
|
|
||
|
Args:
|
||
|
inputs_batch: inputs is T x D np.ndarray
|
||
|
m: number of frames to stack
|
||
|
n: number of frames to skip
|
||
|
"""
|
||
|
|
||
|
LFR_inputs = []
|
||
|
T = data.shape[0]
|
||
|
T_lfr = int(np.ceil(T / n))
|
||
|
for i in range(T_lfr):
|
||
|
if m <= T - i * n:
|
||
|
LFR_inputs.append(np.hstack(data[i * n : i * n + m]))
|
||
|
else:
|
||
|
num_padding = m - (T - i * n)
|
||
|
frame = np.hstack(data[i * n :])
|
||
|
for _ in range(num_padding):
|
||
|
frame = np.hstack((frame, data[-1]))
|
||
|
LFR_inputs.append(frame)
|
||
|
return np.vstack(LFR_inputs)
|