FunASR/funasr/datasets/large_datasets/dataset.py

300 lines
11 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
import logging
import os
import random
from functools import partial
import torch
import torch.distributed as dist
import torchaudio
import numpy as np
# import librosa
import librosa
from kaldiio import ReadHelper
from torch.utils.data import IterableDataset
from funasr.datasets.large_datasets.datapipes.batch import MaxTokenBucketizerIterDataPipe
from funasr.datasets.large_datasets.datapipes.filter import FilterIterDataPipe
from funasr.datasets.large_datasets.datapipes.map import MapperIterDataPipe
from funasr.datasets.large_datasets.utils.clipping import clipping
from funasr.datasets.large_datasets.utils.filter import filter
from funasr.datasets.large_datasets.utils.padding import padding
from funasr.datasets.large_datasets.utils.tokenize import tokenize
def read_lists(list_file):
lists = []
with open(list_file, "r", encoding="utf8") as fin:
for line in fin:
parts = line.strip()
lists.append(parts)
return lists
class AudioDataset(IterableDataset):
def __init__(
self,
scp_lists,
data_names,
data_types,
frontend_conf=None,
shuffle=True,
speed_perturb=None,
mode="train",
):
self.scp_lists = scp_lists
self.data_names = data_names
self.data_types = data_types
self.frontend_conf = frontend_conf
self.shuffle = shuffle
self.mode = mode
self.epoch = -1
self.rank = 0
self.world_size = 1
self.worker_id = 0
self.num_workers = 1
self.speed_perturb = speed_perturb
if self.speed_perturb is not None:
logging.info("Using speed_perturb: {}".format(speed_perturb))
def set_epoch(self, epoch):
self.epoch = epoch
def get_rank_data_list(self, data_index):
assert dist.is_available()
if dist.is_initialized():
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
else:
self.rank = 0
self.world_size = 1
if self.mode == "train":
if self.shuffle:
random.seed(self.epoch)
random.shuffle(data_index)
return data_index[self.rank :: self.world_size]
return data_index
def get_worker_data_list(self, rank_data_index):
worker_info = torch.utils.data.get_worker_info()
if worker_info is None:
self.worker_id = 0
self.num_workers = 1
else:
self.worker_id = worker_info.id
self.num_workers = worker_info.num_workers
return rank_data_index[self.worker_id :: self.num_workers]
def close_reader(self, reader_list):
for reader in reader_list:
reader.close()
def __iter__(self):
data_index = list(range(len(self.scp_lists)))
rank_data_index = self.get_rank_data_list(data_index)
worker_data_index = self.get_worker_data_list(rank_data_index)
for index in worker_data_index:
data = dict(scp=self.scp_lists[index])
assert "scp" in data
scp = data["scp"]
data_file_list = scp.strip().split()
data_name_list = self.data_names.split(",")
data_type_list = self.data_types.split(",")
for file in data_file_list:
assert os.path.exists(file), "{} not exists".format(file)
assert (
len(data_file_list) == len(data_name_list) == len(data_type_list)
), "The item number of data, data_names, data_types must be the same "
reader_list = []
for data_file, data_type in zip(data_file_list, data_type_list):
if data_type == "kaldi_ark":
ark_reader = ReadHelper("ark:{}".format(data_file))
reader_list.append(ark_reader)
elif data_type == "text" or data_type == "sound" or data_type == "text_hotword":
text_reader = open(data_file, "r", encoding="utf-8")
reader_list.append(text_reader)
elif data_type == "none":
continue
else:
raise TypeError("Data type {} is not supported".format(data_type))
for items in zip(*reader_list):
sample_dict = {}
for item, (data_name, data_type) in zip(items, zip(data_name_list, data_type_list)):
if data_type == "kaldi_ark":
key, mat = item
sample_dict[data_name] = mat
if data_name == "speech":
sample_dict["key"] = key
elif data_type == "sound":
key, path = item.strip().split()
try:
waveform, sampling_rate = torchaudio.load(path)
except:
# waveform, sampling_rate = librosa.load(path, dtype='float32')
waveform, sampling_rate = librosa.load(path, dtype="float32")
if waveform.ndim == 2:
waveform = waveform[:, 0]
waveform = np.expand_dims(waveform, axis=0)
waveform = torch.tensor(waveform)
if self.frontend_conf is not None:
if sampling_rate != self.frontend_conf["fs"]:
waveform = torchaudio.transforms.Resample(
orig_freq=sampling_rate, new_freq=self.frontend_conf["fs"]
)(waveform)
sampling_rate = self.frontend_conf["fs"]
waveform = waveform.numpy()
mat = waveform[0]
if self.speed_perturb is not None:
speed = random.choice(self.speed_perturb)
if speed != 1.0:
mat, _ = torchaudio.sox_effects.apply_effects_tensor(
torch.tensor(mat).view(1, -1),
sampling_rate,
[["speed", str(speed)], ["rate", str(sampling_rate)]],
)
mat = mat.view(-1).numpy()
sample_dict[data_name] = mat
sample_dict["sampling_rate"] = sampling_rate
if data_name == "speech":
sample_dict["key"] = key
elif data_type == "text_hotword":
text = item
segs = text.strip().split()
sample_dict[data_name] = segs[1:]
if "key" not in sample_dict:
sample_dict["key"] = segs[0]
sample_dict["hw_tag"] = 1
elif data_type == "text_nospace":
text = item
segs = text.strip().split(maxsplit=1)
sample_dict[data_name] = [x for x in segs[1]]
if "key" not in sample_dict:
sample_dict["key"] = segs[0]
else:
text = item
segs = text.strip().split()
sample_dict[data_name] = segs[1:]
if "key" not in sample_dict:
sample_dict["key"] = segs[0]
yield sample_dict
self.close_reader(reader_list)
def len_fn_example(data):
return 1
def len_fn_token(data):
assert "speech" in data
if "sampling_rate" in data:
return (data["speech"].shape[0] / data["sampling_rate"]) * 1000.0
else:
return data["speech"].shape[0]
def Dataset(
data_list_file,
dict,
seg_dict,
punc_dict,
bpe_tokenizer,
conf,
frontend_conf,
speed_perturb=None,
mode="train",
batch_mode="padding",
):
scp_lists = read_lists(data_list_file)
shuffle = conf.get("shuffle", True)
data_names = conf.get("data_names", "speech,text")
data_types = conf.get("data_types", "kaldi_ark,text")
pre_hwfile = conf.get("pre_hwlist", None)
# pre_prob = conf.get("pre_prob", 0) # unused yet
if pre_hwfile is not None:
pre_hwlist = []
with open(pre_hwfile, "r", encoding="utf-8") as fin:
for line in fin.readlines():
pre_hwlist.append(line.strip())
else:
pre_hwlist = None
hw_config = {
"sample_rate": conf.get("sample_rate", 0.6),
"double_rate": conf.get("double_rate", 0.1),
"hotword_min_length": conf.get("hotword_min_length", 2),
"hotword_max_length": conf.get("hotword_max_length", 8),
"pre_prob": conf.get("pre_prob", 0.0),
"pre_hwlist": pre_hwlist,
}
dataset = AudioDataset(
scp_lists,
data_names,
data_types,
frontend_conf=frontend_conf,
shuffle=shuffle,
speed_perturb=speed_perturb,
mode=mode,
)
if "text" in data_names:
vocab = {
"vocab": dict,
"seg_dict": seg_dict,
"punc_dict": punc_dict,
"bpe_tokenizer": bpe_tokenizer,
"hw_config": hw_config,
}
tokenize_fn = partial(tokenize, **vocab)
dataset = MapperIterDataPipe(dataset, fn=tokenize_fn)
filter_conf = conf.get("filter_conf", {})
filter_fn = partial(filter, **filter_conf)
dataset = FilterIterDataPipe(dataset, fn=filter_fn)
if shuffle:
buffer_conf = conf.get("shuffle_conf", {})
buffer_size = buffer_conf["shuffle_size"]
sort_size = buffer_conf["sort_size"]
else:
buffer_size = 0
sort_size = 1
batch_conf = conf.get("batch_conf", {})
batch_size = batch_conf["batch_size"]
batch_type = batch_conf["batch_type"]
assert batch_type in ["example", "token"]
if batch_type == "example":
len_fn = len_fn_example
else:
len_fn = len_fn_token
dataset = MaxTokenBucketizerIterDataPipe(
dataset,
batch_size=batch_size,
len_fn=len_fn,
buffer_size=buffer_size,
sort_size=sort_size,
batch_mode=batch_mode,
)
int_pad_value = conf.get("int_pad_value", -1)
float_pad_value = conf.get("float_pad_value", 0.0)
padding_conf = {"int_pad_value": int_pad_value, "float_pad_value": float_pad_value}
padding_fn = partial(padding, **padding_conf)
dataset = MapperIterDataPipe(dataset, fn=padding_fn if batch_mode == "padding" else clipping)
return dataset