468 lines
16 KiB
Python
468 lines
16 KiB
Python
|
import torch
|
||
|
import numpy as np
|
||
|
import logging
|
||
|
import math
|
||
|
import random
|
||
|
import torch.distributed as dist
|
||
|
from torch.utils.data import DistributedSampler
|
||
|
from torch.utils.data import BatchSampler, Sampler
|
||
|
import torch.distributed as dist
|
||
|
|
||
|
from funasr.register import tables
|
||
|
|
||
|
|
||
|
@tables.register("batch_sampler_classes", "BatchSampler")
|
||
|
@tables.register("batch_sampler_classes", "CustomDistributedBatchSampler")
|
||
|
@tables.register("batch_sampler_classes", "CustomDistributedDynamicBatchSampler")
|
||
|
@tables.register("batch_sampler_classes", "DynamicBatchLocalShuffleSampler")
|
||
|
@tables.register("batch_sampler_classes", "RankFullLocalShuffleBatchSampler")
|
||
|
@tables.register("batch_sampler_classes", "RankFullLocalShuffleDynamicBatchSampler")
|
||
|
def CustomDistributedBatchSampler_fn(dataset, **kwargs):
|
||
|
dataloader_args = {}
|
||
|
batch_type = kwargs.get("batch_type", "example")
|
||
|
if batch_type == "example":
|
||
|
batch_sampler = CustomDistributedBatchSampler(dataset, **kwargs)
|
||
|
|
||
|
else:
|
||
|
if kwargs.get("sort_size", -1) > 0:
|
||
|
batch_sampler = CustomDistributedBufferDynamicBatchSampler(dataset, **kwargs)
|
||
|
else:
|
||
|
batch_sampler = CustomDistributedDynamicBatchSampler(dataset, **kwargs)
|
||
|
# batch_sampler = CustomDistributedDynamicBatchSampler(dataset, **kwargs)
|
||
|
|
||
|
dataloader_args["batch_sampler"] = batch_sampler
|
||
|
dataloader_args["num_workers"] = kwargs.get("num_workers", 4)
|
||
|
dataloader_args["pin_memory"] = kwargs.get("pin_memory", True)
|
||
|
|
||
|
return dataloader_args
|
||
|
|
||
|
|
||
|
class CustomDistributedBatchSampler(Sampler):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dataset,
|
||
|
batch_size,
|
||
|
num_replicas=None,
|
||
|
rank=None,
|
||
|
shuffle=True,
|
||
|
drop_last=False,
|
||
|
is_training: bool = True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
|
||
|
try:
|
||
|
rank = dist.get_rank()
|
||
|
num_replicas = dist.get_world_size()
|
||
|
except:
|
||
|
rank = 0
|
||
|
num_replicas = 1
|
||
|
self.rank = rank
|
||
|
self.num_replicas = num_replicas
|
||
|
self.dataset = dataset
|
||
|
self.batch_size = batch_size
|
||
|
self.is_training = is_training
|
||
|
self.shuffle = shuffle and is_training
|
||
|
self.drop_last = drop_last
|
||
|
# self.total_size = len(dataset)
|
||
|
if self.drop_last:
|
||
|
self.total_size = (len(self.dataset) // (batch_size * num_replicas)) * (
|
||
|
batch_size * num_replicas
|
||
|
)
|
||
|
else:
|
||
|
self.total_size = math.ceil(len(self.dataset) / (batch_size * num_replicas)) * (
|
||
|
batch_size * num_replicas
|
||
|
)
|
||
|
self.num_samples = int(self.total_size // self.num_replicas)
|
||
|
self.epoch = 0
|
||
|
self.max_token_length = kwargs.get("max_token_length", None)
|
||
|
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
||
|
|
||
|
def __iter__(self):
|
||
|
# Generate a list of indices
|
||
|
if self.shuffle:
|
||
|
g = torch.Generator()
|
||
|
g.manual_seed(self.epoch)
|
||
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||
|
else:
|
||
|
indices = list(range(len(self.dataset)))
|
||
|
|
||
|
# Add extra samples to make it evenly divisible
|
||
|
padding_size = self.total_size - len(indices)
|
||
|
if padding_size <= len(indices):
|
||
|
indices += indices[:padding_size]
|
||
|
else:
|
||
|
indices += (
|
||
|
indices * (padding_size // len(indices)) + indices[: padding_size % len(indices)]
|
||
|
)
|
||
|
|
||
|
assert len(indices) == self.total_size
|
||
|
|
||
|
# Subsample
|
||
|
indices = indices[self.rank : self.total_size : self.num_replicas]
|
||
|
assert len(indices) == self.num_samples
|
||
|
|
||
|
# Filter out indices with length greater than the max length, if provided
|
||
|
if self.max_token_length is not None:
|
||
|
filtered_indices = []
|
||
|
for idx in indices:
|
||
|
source_len = self.dataset.get_source_len(idx) / self.length_scale_source
|
||
|
if source_len <= self.max_token_length:
|
||
|
filtered_indices.append(idx)
|
||
|
indices = filtered_indices
|
||
|
|
||
|
# Now that we have only the indices for this replica, chunk them into batches
|
||
|
batches = [
|
||
|
indices[i : i + self.batch_size] for i in range(0, len(indices), self.batch_size)
|
||
|
]
|
||
|
|
||
|
# Drop the last batch if it's not full and drop_last is True
|
||
|
if self.drop_last and len(batches[-1]) != self.batch_size:
|
||
|
batches = batches[:-1]
|
||
|
|
||
|
return iter(batches)
|
||
|
|
||
|
def __len__(self):
|
||
|
|
||
|
return self.num_samples // self.batch_size
|
||
|
|
||
|
def set_epoch(self, epoch):
|
||
|
self.epoch = epoch
|
||
|
|
||
|
|
||
|
class CustomDistributedBufferBatchSampler(Sampler):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dataset,
|
||
|
batch_size,
|
||
|
num_replicas=None,
|
||
|
rank=None,
|
||
|
shuffle=True,
|
||
|
drop_last=False,
|
||
|
is_training: bool = True,
|
||
|
sort_size: int = 1024,
|
||
|
**kwargs,
|
||
|
):
|
||
|
|
||
|
try:
|
||
|
rank = dist.get_rank()
|
||
|
num_replicas = dist.get_world_size()
|
||
|
except:
|
||
|
rank = 0
|
||
|
num_replicas = 1
|
||
|
self.rank = rank
|
||
|
self.num_replicas = num_replicas
|
||
|
self.dataset = dataset
|
||
|
self.batch_size = batch_size
|
||
|
self.is_training = is_training
|
||
|
self.shuffle = shuffle and is_training
|
||
|
self.drop_last = drop_last
|
||
|
# self.total_size = len(dataset)
|
||
|
if self.drop_last:
|
||
|
self.total_size = (len(self.dataset) // (batch_size * num_replicas)) * (
|
||
|
batch_size * num_replicas
|
||
|
)
|
||
|
else:
|
||
|
self.total_size = math.ceil(len(self.dataset) / (batch_size * num_replicas)) * (
|
||
|
batch_size * num_replicas
|
||
|
)
|
||
|
self.num_samples = int(self.total_size // self.num_replicas)
|
||
|
self.epoch = 0
|
||
|
self.max_token_length = kwargs.get("max_token_length", None)
|
||
|
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
||
|
self.sort_size = sort_size
|
||
|
|
||
|
def __iter__(self):
|
||
|
# Generate a list of indices
|
||
|
if self.shuffle:
|
||
|
g = torch.Generator()
|
||
|
g.manual_seed(self.epoch)
|
||
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||
|
else:
|
||
|
indices = list(range(len(self.dataset)))
|
||
|
|
||
|
# Add extra samples to make it evenly divisible
|
||
|
padding_size = self.total_size - len(indices)
|
||
|
if padding_size <= len(indices):
|
||
|
indices += indices[:padding_size]
|
||
|
else:
|
||
|
indices += (
|
||
|
indices * (padding_size // len(indices)) + indices[: padding_size % len(indices)]
|
||
|
)
|
||
|
|
||
|
assert len(indices) == self.total_size
|
||
|
|
||
|
# Subsample
|
||
|
indices = indices[self.rank : self.total_size : self.num_replicas]
|
||
|
assert len(indices) == self.num_samples
|
||
|
|
||
|
# Filter out indices with length greater than the max length, if provided
|
||
|
if self.max_token_length is not None:
|
||
|
filtered_indices = []
|
||
|
for idx in indices:
|
||
|
source_len = self.dataset.get_source_len(idx) / self.length_scale_source
|
||
|
if source_len <= self.max_token_length:
|
||
|
filtered_indices.append(idx)
|
||
|
indices = filtered_indices
|
||
|
|
||
|
# Buffer sorting logic
|
||
|
sorted_batches = []
|
||
|
buffer = []
|
||
|
|
||
|
for idx in indices:
|
||
|
buffer.append(idx)
|
||
|
if len(buffer) >= self.sort_size:
|
||
|
# Sort the buffer based on some criteria, e.g., dataset sample length
|
||
|
buffer.sort(key=lambda x: self.dataset.get_source_len(x))
|
||
|
sorted_batches.extend(self._create_batches_from_buffer(buffer))
|
||
|
buffer = []
|
||
|
|
||
|
# Handle the remaining items in the buffer
|
||
|
if buffer:
|
||
|
buffer.sort(key=lambda x: self.dataset.get_source_len(x))
|
||
|
sorted_batches.extend(self._create_batches_from_buffer(buffer))
|
||
|
|
||
|
return iter(sorted_batches)
|
||
|
|
||
|
def _create_batches_from_buffer(self, buffer):
|
||
|
# Function to convert the sorted buffer into batches
|
||
|
batched_buffer = [
|
||
|
buffer[i : i + self.batch_size] for i in range(0, len(buffer), self.batch_size)
|
||
|
]
|
||
|
if self.drop_last and len(batched_buffer[-1]) != self.batch_size:
|
||
|
batched_buffer = batched_buffer[:-1]
|
||
|
return batched_buffer
|
||
|
|
||
|
def __len__(self):
|
||
|
|
||
|
return self.num_samples // self.batch_size
|
||
|
|
||
|
def set_epoch(self, epoch):
|
||
|
self.epoch = epoch
|
||
|
|
||
|
|
||
|
class CustomDistributedDynamicBatchSampler(DistributedSampler):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dataset,
|
||
|
batch_size,
|
||
|
num_replicas=None,
|
||
|
rank=None,
|
||
|
shuffle=True,
|
||
|
drop_last=False,
|
||
|
is_training: bool = True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
|
||
|
try:
|
||
|
rank = dist.get_rank()
|
||
|
num_replicas = dist.get_world_size()
|
||
|
except:
|
||
|
rank = 0
|
||
|
num_replicas = 1
|
||
|
self.rank = rank
|
||
|
self.num_replicas = num_replicas
|
||
|
self.dataset = dataset
|
||
|
self.batch_size = batch_size
|
||
|
self.is_training = is_training
|
||
|
self.shuffle = shuffle and is_training
|
||
|
self.drop_last = drop_last
|
||
|
|
||
|
self.total_size = len(self.dataset)
|
||
|
# self.num_samples = int(math.ceil(self.total_size / self.num_replicas))
|
||
|
self.epoch = 0
|
||
|
self.max_token_length = kwargs.get("max_token_length", 2048)
|
||
|
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
||
|
|
||
|
def __iter__(self):
|
||
|
if self.shuffle:
|
||
|
g = torch.Generator()
|
||
|
g.manual_seed(self.epoch)
|
||
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||
|
else:
|
||
|
indices = list(range(len(self.dataset)))
|
||
|
|
||
|
indices = indices[self.rank : self.total_size : self.num_replicas]
|
||
|
|
||
|
batches = []
|
||
|
batch = []
|
||
|
max_len_in_batch = 0
|
||
|
current_batch_length = 0
|
||
|
|
||
|
for idx in indices:
|
||
|
sample_length = self.dataset.get_source_len(idx)
|
||
|
if sample_length > self.max_token_length:
|
||
|
continue
|
||
|
potential_batch_length = (
|
||
|
max_len_in_batch if sample_length < max_len_in_batch else sample_length
|
||
|
) * (len(batch) + 1)
|
||
|
|
||
|
if potential_batch_length <= self.batch_size:
|
||
|
batch.append(idx)
|
||
|
if sample_length > max_len_in_batch:
|
||
|
max_len_in_batch = sample_length
|
||
|
# current_batch_length = max_len_in_batch * len(batch)
|
||
|
else:
|
||
|
batches.append(batch)
|
||
|
batch = [idx]
|
||
|
max_len_in_batch = sample_length
|
||
|
# current_batch_length = max_len_in_batch
|
||
|
|
||
|
# Add the last batch if it's not empty and we're not dropping it
|
||
|
if batch and (not self.drop_last or len(batch) * max_len_in_batch == self.batch_size):
|
||
|
batches.append(batch)
|
||
|
|
||
|
return iter(batches)
|
||
|
|
||
|
def __len__(self):
|
||
|
|
||
|
return 1
|
||
|
|
||
|
def set_epoch(self, epoch):
|
||
|
self.epoch = epoch
|
||
|
|
||
|
|
||
|
class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dataset,
|
||
|
batch_size,
|
||
|
batch_type="token",
|
||
|
num_replicas=None,
|
||
|
rank=None,
|
||
|
rank_split=False,
|
||
|
shuffle=True,
|
||
|
drop_last=False,
|
||
|
is_training: bool = True,
|
||
|
sort_size: int = 1024,
|
||
|
**kwargs,
|
||
|
):
|
||
|
|
||
|
try:
|
||
|
rank = dist.get_rank()
|
||
|
num_replicas = dist.get_world_size()
|
||
|
except:
|
||
|
rank = 0
|
||
|
num_replicas = 1
|
||
|
|
||
|
# if rank_split:
|
||
|
# logging.info(f"Warning, rank_split: {rank_split}, batch and shuffle data in local rank")
|
||
|
# rank = 0
|
||
|
# num_replicas = 1
|
||
|
|
||
|
self.rank = rank
|
||
|
self.num_replicas = num_replicas
|
||
|
self.dataset = dataset
|
||
|
self.batch_size = batch_size
|
||
|
self.batch_type = batch_type
|
||
|
self.is_training = is_training
|
||
|
self.shuffle = shuffle and is_training
|
||
|
self.drop_last = drop_last
|
||
|
|
||
|
self.total_size = len(self.dataset)
|
||
|
self.num_samples = int(math.ceil(self.total_size / self.num_replicas))
|
||
|
self.epoch = 0
|
||
|
self.sort_size = sort_size * num_replicas
|
||
|
self.max_token_length = kwargs.get("max_token_length", 2048)
|
||
|
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
||
|
super().__init__(
|
||
|
dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle, drop_last=drop_last
|
||
|
)
|
||
|
|
||
|
def __iter__(self):
|
||
|
if self.shuffle:
|
||
|
g = torch.Generator()
|
||
|
g.manual_seed(self.epoch)
|
||
|
random.seed(self.epoch)
|
||
|
|
||
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||
|
else:
|
||
|
indices = list(range(len(self.dataset)))
|
||
|
|
||
|
# Create sorted buffers and form batches
|
||
|
buffer_batches = []
|
||
|
for i in range(0, len(indices), self.sort_size):
|
||
|
buffer = sorted(
|
||
|
indices[i : i + self.sort_size], key=lambda idx: self.dataset.get_source_len(idx)
|
||
|
)
|
||
|
batch = []
|
||
|
max_len_in_batch = 0
|
||
|
for idx in buffer:
|
||
|
original_sample_length = self.dataset.get_source_len(idx)
|
||
|
if original_sample_length > self.max_token_length:
|
||
|
continue
|
||
|
sample_length = 1 if self.batch_type == "example" else original_sample_length
|
||
|
potential_batch_length = max(max_len_in_batch, sample_length) * (len(batch) + 1)
|
||
|
if potential_batch_length <= self.batch_size:
|
||
|
batch.append(idx)
|
||
|
max_len_in_batch = max(max_len_in_batch, sample_length)
|
||
|
else:
|
||
|
buffer_batches.append(batch)
|
||
|
batch = [idx]
|
||
|
max_len_in_batch = sample_length
|
||
|
if batch:
|
||
|
buffer_batches.append(batch)
|
||
|
|
||
|
# Ensure each rank gets the same number of batches, duplicate data if needed
|
||
|
batches_per_rank = math.ceil(len(buffer_batches) / self.num_replicas)
|
||
|
total_batches_needed = batches_per_rank * self.num_replicas
|
||
|
|
||
|
extra_batches = total_batches_needed - len(buffer_batches)
|
||
|
buffer_batches += random.choices(buffer_batches, k=extra_batches)
|
||
|
|
||
|
# Evenly distribute batches from buffer_batches to each rank
|
||
|
rank_batches = [[] for _ in range(self.num_replicas)]
|
||
|
for i, batch in enumerate(buffer_batches):
|
||
|
rank_batches[i % self.num_replicas].append(batch)
|
||
|
|
||
|
# Assign all batches for the current rank directly
|
||
|
final_batches = rank_batches[self.rank]
|
||
|
|
||
|
return iter(final_batches)
|
||
|
|
||
|
def __len__(self):
|
||
|
|
||
|
return 1
|
||
|
|
||
|
def set_epoch(self, epoch):
|
||
|
self.epoch = epoch
|
||
|
|
||
|
|
||
|
class DistributedSamplerWarp(BatchSampler):
|
||
|
def __init__(
|
||
|
self, dataset, batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=False
|
||
|
):
|
||
|
if num_replicas is None:
|
||
|
if not torch.distributed.is_available():
|
||
|
raise RuntimeError("Requires distributed package to be available")
|
||
|
num_replicas = torch.distributed.get_world_size()
|
||
|
if rank is None:
|
||
|
if not torch.distributed.is_available():
|
||
|
raise RuntimeError("Requires distributed package to be available")
|
||
|
rank = torch.distributed.get_rank()
|
||
|
|
||
|
self.dataset = dataset
|
||
|
self.batch_size = batch_size
|
||
|
self.num_replicas = num_replicas
|
||
|
self.rank = rank
|
||
|
self.shuffle = shuffle
|
||
|
self.drop_last = drop_last
|
||
|
|
||
|
# Create an instance of the DistributedSampler
|
||
|
self.sampler = DistributedSampler(
|
||
|
self.dataset, num_replicas=self.num_replicas, rank=self.rank, shuffle=self.shuffle
|
||
|
)
|
||
|
|
||
|
# Call BatchSampler's constructor
|
||
|
super().__init__(self.sampler, batch_size, drop_last)
|
||
|
|
||
|
def __iter__(self):
|
||
|
# If we shuffle, we need to call the set_epoch method
|
||
|
if self.shuffle:
|
||
|
self.sampler.set_epoch(self.epoch)
|
||
|
|
||
|
# Generate batch indices using the parent class
|
||
|
return super().__iter__()
|
||
|
|
||
|
def set_epoch(self, epoch):
|
||
|
self.epoch = epoch
|