FunASR/fun_text_processing/text_normalization/de/verbalizers/time.py

127 lines
5.0 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
import pynini
from fun_text_processing.text_normalization.de.utils import get_abs_path, load_labels
from fun_text_processing.text_normalization.en.graph_utils import (
DAMO_DIGIT,
DAMO_SIGMA,
GraphFst,
convert_space,
delete_preserve_order,
)
from pynini.lib import pynutil
class TimeFst(GraphFst):
"""
Finite state transducer for verbalizing electronic, e.g.
time { hours: "2" minutes: "15"} -> "zwei uhr fünfzehn"
time { minutes: "15" hours: "2" } -> "viertel nach zwei"
time { minutes: "15" hours: "2" } -> "fünfzehn nach zwei"
time { hours: "14" minutes: "15"} -> "vierzehn uhr fünfzehn"
time { minutes: "15" hours: "14" } -> "viertel nach zwei"
time { minutes: "15" hours: "14" } -> "fünfzehn nach drei"
time { minutes: "45" hours: "14" } -> "viertel vor drei"
Args:
cardinal_tagger: cardinal_tagger tagger GraphFst
deterministic: if True will provide a single transduction option,
for False multiple transduction are generated (used for audio-based normalization)
"""
def __init__(self, cardinal_tagger: GraphFst, deterministic: bool = True):
super().__init__(name="time", kind="verbalize", deterministic=deterministic)
# add weight so when using inverse text normalization this conversion is depriotized
night_to_early = pynutil.add_weight(
pynini.invert(
pynini.string_file(get_abs_path("data/time/hour_to_night.tsv"))
).optimize(),
weight=0.0001,
)
hour_to = pynini.invert(
pynini.string_file(get_abs_path("data/time/hour_to.tsv"))
).optimize()
minute_to = pynini.invert(
pynini.string_file(get_abs_path("data/time/minute_to.tsv"))
).optimize()
time_zone_graph = pynini.invert(
convert_space(
pynini.union(*[x[1] for x in load_labels(get_abs_path("data/time/time_zone.tsv"))])
)
)
graph_zero = pynini.invert(
pynini.string_file(get_abs_path("data/numbers/zero.tsv"))
).optimize()
number_verbalization = graph_zero | cardinal_tagger.two_digit_non_zero
hour = pynutil.delete('hours: "') + pynini.closure(DAMO_DIGIT, 1) + pynutil.delete('"')
hour_verbalized = hour @ number_verbalization @ pynini.cdrewrite(
pynini.cross("eins", "ein"), "[BOS]", "[EOS]", DAMO_SIGMA
) + pynutil.insert(" uhr")
minute = pynutil.delete('minutes: "') + pynini.closure(DAMO_DIGIT, 1) + pynutil.delete('"')
zone = pynutil.delete('zone: "') + time_zone_graph + pynutil.delete('"')
optional_zone = pynini.closure(pynini.accep(" ") + zone, 0, 1)
second = pynutil.delete('seconds: "') + pynini.closure(DAMO_DIGIT, 1) + pynutil.delete('"')
graph_hms = (
hour_verbalized
+ pynini.accep(" ")
+ minute @ number_verbalization
+ pynutil.insert(" minuten")
+ pynini.accep(" ")
+ second @ number_verbalization
+ pynutil.insert(" sekunden")
+ optional_zone
)
graph_hms @= pynini.cdrewrite(
pynini.cross("eins minuten", "eine minute")
| pynini.cross("eins sekunden", "eine sekunde"),
pynini.union(" ", "[BOS]"),
"",
DAMO_SIGMA,
)
min_30 = [str(x) for x in range(1, 31)]
min_30 = pynini.union(*min_30)
min_29 = [str(x) for x in range(1, 30)]
min_29 = pynini.union(*min_29)
graph_h = hour_verbalized
graph_hm = hour_verbalized + pynini.accep(" ") + minute @ number_verbalization
graph_m_past_h = (
minute @ min_30 @ (number_verbalization | pynini.cross("15", "viertel"))
+ pynini.accep(" ")
+ pynutil.insert("nach ")
# + hour @ number_verbalization
+ hour
@ pynini.cdrewrite(night_to_early, "[BOS]", "[EOS]", DAMO_SIGMA)
@ number_verbalization
)
graph_m30_h = (
minute @ pynini.cross("30", "halb")
+ pynini.accep(" ")
+ hour
@ pynini.cdrewrite(night_to_early, "[BOS]", "[EOS]", DAMO_SIGMA)
@ hour_to
@ number_verbalization
)
graph_m_to_h = (
minute @ minute_to @ min_29 @ (number_verbalization | pynini.cross("15", "viertel"))
+ pynini.accep(" ")
+ pynutil.insert("vor ")
+ hour
@ pynini.cdrewrite(night_to_early, "[BOS]", "[EOS]", DAMO_SIGMA)
@ hour_to
@ number_verbalization
)
self.graph = (
graph_hms
| graph_h
| graph_hm
| pynutil.add_weight(graph_m_past_h, weight=0.0001)
| pynutil.add_weight(graph_m30_h, weight=0.0001)
| pynutil.add_weight(graph_m_to_h, weight=0.0001)
) + optional_zone
delete_tokens = self.delete_tokens(self.graph + delete_preserve_order)
self.fst = delete_tokens.optimize()