FunASR/fun_text_processing/inverse_text_normalization/run_evaluate.py

115 lines
4.4 KiB
Python
Raw Permalink Normal View History

2024-05-18 15:50:56 +08:00
from argparse import ArgumentParser
from fun_text_processing.inverse_text_normalization.inverse_normalize import InverseNormalizer
from fun_text_processing.text_normalization.data_loader_utils import (
evaluate,
known_types,
load_files,
training_data_to_sentences,
training_data_to_tokens,
)
"""
Runs Evaluation on data in the format of : <semiotic class>\t<unnormalized text>\t<`self` if trivial class or normalized text>
like the Google text normalization data https://www.kaggle.com/richardwilliamsproat/text-normalization-for-english-russian-and-polish
"""
def parse_args():
parser = ArgumentParser()
parser.add_argument("--input", help="input file path", type=str)
parser.add_argument(
"--lang",
help="language",
choices=["en", "id", "ja", "de", "es", "pt", "ru", "fr", "vi", "ko", "zh", "fil"],
default="en",
type=str,
)
parser.add_argument(
"--cat",
dest="category",
help="focus on class only (" + ", ".join(known_types) + ")",
type=str,
default=None,
choices=known_types,
)
parser.add_argument(
"--filter", action="store_true", help="clean data for inverse normalization purposes"
)
return parser.parse_args()
if __name__ == "__main__":
# Example usage:
# python run_evaluate.py --input=<INPUT> --cat=<CATEGORY> --filter
args = parse_args()
if args.lang == "en":
from fun_text_processing.inverse_text_normalization.en.clean_eval_data import (
filter_loaded_data,
)
file_path = args.input
inverse_normalizer = InverseNormalizer()
print("Loading training data: " + file_path)
training_data = load_files([file_path])
if args.filter:
training_data = filter_loaded_data(training_data)
if args.category is None:
print("Sentence level evaluation...")
sentences_un_normalized, sentences_normalized, _ = training_data_to_sentences(training_data)
print("- Data: " + str(len(sentences_normalized)) + " sentences")
sentences_prediction = inverse_normalizer.inverse_normalize_list(sentences_normalized)
print("- Denormalized. Evaluating...")
sentences_accuracy = evaluate(
preds=sentences_prediction, labels=sentences_un_normalized, input=sentences_normalized
)
print("- Accuracy: " + str(sentences_accuracy))
print("Token level evaluation...")
tokens_per_type = training_data_to_tokens(training_data, category=args.category)
token_accuracy = {}
for token_type in tokens_per_type:
print("- Token type: " + token_type)
tokens_un_normalized, tokens_normalized = tokens_per_type[token_type]
print(" - Data: " + str(len(tokens_normalized)) + " tokens")
tokens_prediction = inverse_normalizer.inverse_normalize_list(tokens_normalized)
print(" - Denormalized. Evaluating...")
token_accuracy[token_type] = evaluate(
tokens_prediction, tokens_un_normalized, input=tokens_normalized
)
print(" - Accuracy: " + str(token_accuracy[token_type]))
token_count_per_type = {
token_type: len(tokens_per_type[token_type][0]) for token_type in tokens_per_type
}
token_weighted_accuracy = [
token_count_per_type[token_type] * accuracy
for token_type, accuracy in token_accuracy.items()
]
print("- Accuracy: " + str(sum(token_weighted_accuracy) / sum(token_count_per_type.values())))
print(" - Total: " + str(sum(token_count_per_type.values())), "\n")
for token_type in token_accuracy:
if token_type not in known_types:
raise ValueError("Unexpected token type: " + token_type)
if args.category is None:
c1 = ["Class", "sent level"] + known_types
c2 = ["Num Tokens", len(sentences_normalized)] + [
token_count_per_type[known_type] if known_type in tokens_per_type else "0"
for known_type in known_types
]
c3 = ["Denormalization", sentences_accuracy] + [
token_accuracy[known_type] if known_type in token_accuracy else "0"
for known_type in known_types
]
for i in range(len(c1)):
print(f"{str(c1[i]):10s} | {str(c2[i]):10s} | {str(c3[i]):5s}")
else:
print(f"numbers\t{token_count_per_type[args.category]}")
print(f"Denormalization\t{token_accuracy[args.category]}")