utils for punctuation and emotion and speaker ver

This commit is contained in:
bing 2024-05-11 22:02:52 +08:00
commit 31017e1ec4
15 changed files with 887 additions and 0 deletions

1
takway/stt/__init__.py Normal file
View File

@ -0,0 +1 @@
from .base_stt import *

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

65
takway/stt/base_stt.py Normal file
View File

@ -0,0 +1,65 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import wave
import io
import os
import logging
from ..common_utils import decode_str2bytes
class STTBase:
def __init__(self, RATE=16000, cfg_path=None, debug=False):
self.RATE = RATE
self.debug = debug
self.asr_cfg = self.parse_json(cfg_path)
def parse_json(self, cfg_path):
cfg = None
self.hotwords = None
if cfg_path is not None:
with open(cfg_path, 'r', encoding='utf-8') as f:
cfg = json.load(f)
self.hotwords = cfg.get('hot_words', None)
logging.info(f"load STT config file: {cfg_path}")
logging.info(f"Hot words: {self.hotwords}")
else:
logging.warning("No STT config file provided, using default config.")
return cfg
def add_hotword(self, hotword):
"""add hotword to list"""
if self.hotwords is None:
self.hotwords = ""
if isinstance(hotword, str):
self.hotwords = self.hotwords + " " + "hotword"
elif isinstance(hotword, (list, tuple)):
# 将hotwords转换为str并用空格隔开
self.hotwords = self.hotwords + " " + " ".join(hotword)
else:
raise TypeError("hotword must be str or list")
def check_audio_type(self, audio_data):
"""check audio data type and convert it to bytes if necessary."""
if isinstance(audio_data, bytes):
pass
elif isinstance(audio_data, list):
audio_data = b''.join(audio_data)
elif isinstance(audio_data, str):
audio_data = decode_str2bytes(audio_data)
elif isinstance(audio_data, io.BytesIO):
wf = wave.open(audio_data, 'rb')
audio_data = wf.readframes(wf.getnframes())
else:
raise TypeError(f"audio_data must be bytes, str or io.BytesIO, but got {type(audio_data)}")
return audio_data
def text_postprecess(self, result, data_id='text'):
"""postprecess recognized result."""
text = result[data_id]
if isinstance(text, list):
text = ''.join(text)
return text.replace(' ', '')
def recognize(self, audio_data, queue=None):
"""recognize audio data to text"""
pass

142
takway/stt/emotion_utils.py Normal file
View File

@ -0,0 +1,142 @@
import io
import numpy as np
import base64
import wave
from funasr import AutoModel
import time
"""
Base模型
不能进行情绪分类,只能用作特征提取
"""
FUNASRBASE = {
"model_type": "funasr",
"model_path": "iic/emotion2vec_base",
"model_revision": "v2.0.4"
}
"""
Finetune模型
输出分类结果
"""
FUNASRFINETUNE = {
"model_type": "funasr",
"model_path": "iic/emotion2vec_base_finetuned"
}
def decode_str2bytes(data):
# 将Base64编码的字节串解码为字节串
if data is None:
return None
return base64.b64decode(data.encode('utf-8'))
class Emotion:
def __init__(self,
model_type="funasr",
model_path="iic/emotion2vec_base",
device="cuda",
model_revision="v2.0.4",
**kwargs):
self.model_type = model_type
self.initialize(model_type, model_path, device, model_revision, **kwargs)
# 初始化模型
def initialize(self,
model_type,
model_path,
device,
model_revision,
**kwargs):
if model_type == "funasr":
self.emotion_model = AutoModel(model=model_path, device=device, model_revision=model_revision, **kwargs)
else:
raise NotImplementedError(f"unsupported model type [{model_type}]. only [funasr] expected.")
# 检查输入类型
def check_audio_type(self,
audio_data):
"""check audio data type and convert it to bytes if necessary."""
if isinstance(audio_data, bytes):
pass
elif isinstance(audio_data, list):
audio_data = b''.join(audio_data)
elif isinstance(audio_data, str):
audio_data = decode_str2bytes(audio_data)
elif isinstance(audio_data, io.BytesIO):
wf = wave.open(audio_data, 'rb')
audio_data = wf.readframes(wf.getnframes())
elif isinstance(audio_data, np.ndarray):
pass
else:
raise TypeError(f"audio_data must be bytes, list, str, \
io.BytesIO or numpy array, but got {type(audio_data)}")
if isinstance(audio_data, bytes):
audio_data = np.frombuffer(audio_data, dtype=np.int16)
elif isinstance(audio_data, np.ndarray):
if audio_data.dtype != np.int16:
audio_data = audio_data.astype(np.int16)
else:
raise TypeError(f"audio_data must be bytes or numpy array, but got {type(audio_data)}")
# 输入类型必须是float32
if isinstance(audio_data, np.ndarray):
audio_data = audio_data.astype(np.float32)
else:
raise TypeError(f"audio_data must be numpy array, but got {type(audio_data)}")
return audio_data
def process(self,
audio_data,
granularity="utterance",
extract_embedding=False,
output_dir=None,
only_score=True):
"""
audio_data: only float32 expected beacause layernorm
extract_embedding: save embedding if true
output_dir: save path for embedding
only_Score: only return lables & scores if true
"""
audio_data = self.check_audio_type(audio_data)
if self.model_type == 'funasr':
result = self.emotion_model.generate(audio_data, output_dir=output_dir, granularity=granularity, extract_embedding=extract_embedding)
else:
pass
# 只保留 lables 和 scores
if only_score:
maintain_key = ["labels", "scores"]
for res in result:
keys_to_remove = [k for k in res.keys() if k not in maintain_key]
for k in keys_to_remove:
res.pop(k)
return result[0]
# only for test
def load_audio_file(wav_file):
with wave.open(wav_file, 'rb') as wf:
params = wf.getparams()
frames = wf.readframes(params.nframes)
print("Audio file loaded.")
# Audio Parameters
# print("Channels:", params.nchannels)
# print("Sample width:", params.sampwidth)
# print("Frame rate:", params.framerate)
# print("Number of frames:", params.nframes)
# print("Compression type:", params.comptype)
return frames
if __name__ == "__main__":
inputs = r".\example\test.wav"
inputs = load_audio_file(inputs)
device = "cuda"
# FUNASRBASE.update({"device": device})
FUNASRFINETUNE.update({"deivce": device})
emotion_model = Emotion(**FUNASRFINETUNE)
s = time.time()
result = emotion_model.process(inputs)
t = time.time()
print(t - s)
print(result)

186
takway/stt/funasr_utils.py Normal file
View File

@ -0,0 +1,186 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ####################################################### #
# FunAutoSpeechRecognizer: https://github.com/alibaba-damo-academy/FunASR
# ####################################################### #
import io
import time
import numpy as np
from takway.common_utils import decode_str2bytes
from funasr import AutoModel
from takway.stt.base_stt import STTBase
class FunAutoSpeechRecognizer(STTBase):
def __init__(self,
model_path="paraformer-zh-streaming",
device="cuda",
RATE=16000,
cfg_path=None,
debug=False,
chunk_ms=480,
encoder_chunk_look_back=4,
decoder_chunk_look_back=1,
**kwargs):
super().__init__(RATE=RATE, cfg_path=cfg_path, debug=debug)
self.asr_model = AutoModel(model=model_path, device=device, **kwargs)
self.encoder_chunk_look_back = encoder_chunk_look_back #number of chunks to lookback for encoder self-attention
self.decoder_chunk_look_back = decoder_chunk_look_back #number of encoder chunks to lookback for decoder cross-attention
#[0, 8, 4] 480ms, [0, 10, 5] 600ms
if chunk_ms == 480:
self.chunk_size = [0, 8, 4]
elif chunk_ms == 600:
self.chunk_size = [0, 10, 5]
else:
raise ValueError("`chunk_ms` should be 480 or 600, and type is int.")
self.chunk_partial_size = self.chunk_size[1] * 960
self.audio_cache = None
self.asr_cache = {}
self._init_asr()
def check_audio_type(self, audio_data):
"""check audio data type and convert it to bytes if necessary."""
if isinstance(audio_data, bytes):
pass
elif isinstance(audio_data, list):
audio_data = b''.join(audio_data)
elif isinstance(audio_data, str):
audio_data = decode_str2bytes(audio_data)
elif isinstance(audio_data, io.BytesIO):
wf = wave.open(audio_data, 'rb')
audio_data = wf.readframes(wf.getnframes())
elif isinstance(audio_data, np.ndarray):
pass
else:
raise TypeError(f"audio_data must be bytes, list, str, \
io.BytesIO or numpy array, but got {type(audio_data)}")
if isinstance(audio_data, bytes):
audio_data = np.frombuffer(audio_data, dtype=np.int16)
elif isinstance(audio_data, np.ndarray):
if audio_data.dtype != np.int16:
audio_data = audio_data.astype(np.int16)
else:
raise TypeError(f"audio_data must be bytes or numpy array, but got {type(audio_data)}")
return audio_data
def _init_asr(self):
# 随机初始化一段音频数据
init_audio_data = np.random.randint(-32768, 32767, size=self.chunk_partial_size, dtype=np.int16)
self.asr_model.generate(input=init_audio_data, cache=self.asr_cache, is_final=False, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
self.audio_cache = None
self.asr_cache = {}
print("init ASR model done.")
def recognize(self, audio_data):
"""recognize audio data to text"""
audio_data = self.check_audio_type(audio_data)
result = self.asr_model.generate(input=audio_data,
batch_size_s=300,
hotword=self.hotwords)
# print(result)
text = ''
for res in result:
text += res['text']
return text
def streaming_recognize(self,
audio_data,
is_end=False,
auto_det_end=False):
"""recognize partial result
Args:
audio_data: bytes or numpy array, partial audio data
is_end: bool, whether the audio data is the end of a sentence
auto_det_end: bool, whether to automatically detect the end of a audio data
"""
text_dict = dict(text=[], is_end=is_end)
audio_data = self.check_audio_type(audio_data)
if self.audio_cache is None:
self.audio_cache = audio_data
else:
# print(f"audio_data: {audio_data.shape}, audio_cache: {self.audio_cache.shape}")
if self.audio_cache.shape[0] > 0:
self.audio_cache = np.concatenate([self.audio_cache, audio_data], axis=0)
if not is_end and self.audio_cache.shape[0] < self.chunk_partial_size:
return text_dict
total_chunk_num = int((len(self.audio_cache)-1)/self.chunk_partial_size)
if is_end:
# if the audio data is the end of a sentence, \
# we need to add one more chunk to the end to \
# ensure the end of the sentence is recognized correctly.
auto_det_end = True
if auto_det_end:
total_chunk_num += 1
# print(f"chunk_size: {self.chunk_size}, chunk_stride: {self.chunk_partial_size}, total_chunk_num: {total_chunk_num}, len: {len(self.audio_cache)}")
end_idx = None
for i in range(total_chunk_num):
if auto_det_end:
is_end = i == total_chunk_num - 1
start_idx = i*self.chunk_partial_size
if auto_det_end:
end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num-1 else -1
else:
end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num else -1
# print(f"cut part: {start_idx}:{end_idx}, is_end: {is_end}, i: {i}, total_chunk_num: {total_chunk_num}")
# t_stamp = time.time()
speech_chunk = self.audio_cache[start_idx:end_idx]
# TODO: exceptions processes
try:
res = self.asr_model.generate(input=speech_chunk, cache=self.asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
except ValueError as e:
print(f"ValueError: {e}")
continue
text_dict['text'].append(self.text_postprecess(res[0], data_id='text'))
# print(f"each chunk time: {time.time()-t_stamp}")
if is_end:
self.audio_cache = None
self.asr_cache = {}
else:
if end_idx:
self.audio_cache = self.audio_cache[end_idx:] # cut the processed part from audio_cache
text_dict['is_end'] = is_end
# print(f"text_dict: {text_dict}")
return text_dict
if __name__ == '__main__':
from takway.audio_utils import BaseAudio
rec = BaseAudio(input=True, CHUNK=3840)
# return_type = 'bytes'
file_path = 'my_recording.wav'
data = rec.load_audio_file(file_path)
asr = FunAutoSpeechRecognizer()
# asr.recognize(data)
total_chunk_num = int((len(data)-1)/rec.CHUNK+1)
print(f"total_chunk_num: {total_chunk_num}")
for i in range(total_chunk_num):
is_end = i == total_chunk_num - 1
speech_chunk = data[i*rec.CHUNK:(i+1)*rec.CHUNK]
text_dict = asr.streaming_recognize(speech_chunk, is_end)
'''
asr.streaming_recognize(data, auto_det_end=True)
'''

View File

@ -0,0 +1,168 @@
from takway.stt.funasr_utils import FunAutoSpeechRecognizer
from takway.stt.punctuation_utils import CTTRANSFORMER, Punctuation
from takway.stt.emotion_utils import FUNASRFINETUNE, Emotion
from takway.stt.speaker_ver_utils import ERES2NETV2, DEFALUT_SAVE_PATH, speaker_verfication
import os
import pdb
import numpy as np
class ModifiedRecognizer(FunAutoSpeechRecognizer):
def __init__(self,
use_punct=True,
use_emotion=False,
use_speaker_ver=True):
super().__init__(
model_path="paraformer-zh-streaming",
device="cuda",
RATE=16000,
cfg_path=None,
debug=False,
chunk_ms=480,
encoder_chunk_look_back=4,
decoder_chunk_look_back=1)
self.use_punct = use_punct
self.use_emotion = use_emotion
self.use_speaker_ver = use_speaker_ver
if use_punct:
self.puctuation_model = Punctuation(**CTTRANSFORMER)
if use_emotion:
self.emotion_model = Emotion(**FUNASRFINETUNE)
if use_speaker_ver:
self.speaker_ver_model = speaker_verfication(**ERES2NETV2)
def initialize_speaker(self, speaker_1_wav):
if not self.use_speaker_ver:
raise NotImplementedError("no access")
if speaker_1_wav.endswith(".npy"):
self.save_speaker_path = speaker_1_wav
elif speaker_1_wav.endswith('.wav'):
self.save_speaker_path = os.path.join(DEFALUT_SAVE_PATH,
os.path.basename(speaker_1_wav).replace(".wav", ".npy"))
# self.save_speaker_path = DEFALUT_SAVE_PATH
self.speaker_ver_model.wav2embeddings(speaker_1_wav, self.save_speaker_path)
else:
raise TypeError("only support [.npy] or [.wav].")
def speaker_ver(self, speaker_2_wav):
if not self.use_speaker_ver:
raise NotImplementedError("no access")
if not hasattr(self, "save_speaker_path"):
raise NotImplementedError("please initialize speaker first")
# pdb.set_trace()
return self.speaker_ver_model.verfication(base_emb=self.save_speaker_path,
speaker_2_wav=speaker_2_wav) == 'yes'
def recognize(self, audio_data):
audio_data = self.check_audio_type(audio_data)
if self.use_speaker_ver:
if self.speaker_ver_model.verfication(self.save_speaker_path,
speaker_2_wav=audio_data) == 'no':
return "Other People"
result = self.asr_model.generate(input=audio_data,
batch_size_s=300,
hotword=self.hotwords)
text = ''
for res in result:
text += res['text']
if self.use_punct:
text = self.puctuation_model.process(text+'#', append_period=False).replace('#', '')
return text
def recognize_emotion(self, audio_data):
audio_data = self.check_audio_type(audio_data)
if self.use_speaker_ver:
if self.speaker_ver_model.verfication(self.save_speaker_path,
speaker_2_wav=audio_data) == 'no':
return "Other People"
if self.use_emotion:
return self.emotion_model.process(audio_data)
else:
raise NotImplementedError("no access")
def streaming_recognize(self, audio_data, is_end=False, auto_det_end=False):
"""recognize partial result
Args:
audio_data: bytes or numpy array, partial audio data
is_end: bool, whether the audio data is the end of a sentence
auto_det_end: bool, whether to automatically detect the end of a audio data
"""
audio_data = self.check_audio_type(audio_data)
if self.use_speaker_ver:
if self.speaker_ver_model.verfication(self.save_speaker_path,
speaker_2_wav=audio_data) == 'no':
return "Other People"
text_dict = dict(text=[], is_end=is_end)
if self.audio_cache is None:
self.audio_cache = audio_data
else:
# print(f"audio_data: {audio_data.shape}, audio_cache: {self.audio_cache.shape}")
if self.audio_cache.shape[0] > 0:
self.audio_cache = np.concatenate([self.audio_cache, audio_data], axis=0)
if not is_end and self.audio_cache.shape[0] < self.chunk_partial_size:
return text_dict
total_chunk_num = int((len(self.audio_cache)-1)/self.chunk_partial_size)
if is_end:
# if the audio data is the end of a sentence, \
# we need to add one more chunk to the end to \
# ensure the end of the sentence is recognized correctly.
auto_det_end = True
if auto_det_end:
total_chunk_num += 1
# print(f"chunk_size: {self.chunk_size}, chunk_stride: {self.chunk_partial_size}, total_chunk_num: {total_chunk_num}, len: {len(self.audio_cache)}")
end_idx = None
for i in range(total_chunk_num):
if auto_det_end:
is_end = i == total_chunk_num - 1
start_idx = i*self.chunk_partial_size
if auto_det_end:
end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num-1 else -1
else:
end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num else -1
# print(f"cut part: {start_idx}:{end_idx}, is_end: {is_end}, i: {i}, total_chunk_num: {total_chunk_num}")
# t_stamp = time.time()
speech_chunk = self.audio_cache[start_idx:end_idx]
# TODO: exceptions processes
try:
res = self.asr_model.generate(input=speech_chunk, cache=self.asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
except ValueError as e:
print(f"ValueError: {e}")
continue
if self.use_punct:
text_dict['text'].append(self.puctuation_model.process(self.text_postprecess(res[0], data_id='text'), cache=text_dict))
else:
text_dict['text'].append(self.text_postprecess(res[0], data_id='text'))
# print(f"each chunk time: {time.time()-t_stamp}")
if is_end:
self.audio_cache = None
self.asr_cache = {}
else:
if end_idx:
self.audio_cache = self.audio_cache[end_idx:] # cut the processed part from audio_cache
text_dict['is_end'] = is_end
if self.use_punct and is_end:
text_dict['text'].append(self.puctuation_model.process('#', cache=text_dict).replace('#', ''))
# print(f"text_dict: {text_dict}")
return text_dict

View File

@ -0,0 +1,119 @@
from funasr import AutoModel
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
PUNCTUATION_MARK = [",", ".", "?", "!", "", "", "", ""]
"""
FUNASR
模型大小: 1G
效果: 较好
输入类型: 仅支持字符串不支持list, 输入list会将list视为彼此独立的字符串处理
"""
FUNASR = {
"model_type": "funasr",
"model_path": "ct-punc",
"model_revision": "v2.0.4"
}
"""
CTTRANSFORMER
模型大小: 275M
效果较差
输入类型: 支持字符串与list, 同时支持输入cache
"""
CTTRANSFORMER = {
"model_type": "ct-transformer",
"model_path": "iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727",
"model_revision": "v2.0.4"
}
class Punctuation:
def __init__(self,
model_type="funasr", # funasr | ct-transformer
model_path="ct-punc",
device="cuda",
model_revision="v2.0.4",
**kwargs):
self.model_type=model_type
self.initialize(model_type, model_path, device, model_revision, **kwargs)
def initialize(self,
model_type,
model_path,
device,
model_revision,
**kwargs):
if model_type == 'funasr':
self.punc_model = AutoModel(model=model_path, device=device, model_revision=model_revision, **kwargs)
elif model_type == 'ct-transformer':
self.punc_model = pipeline(task=Tasks.punctuation, model=model_path, model_revision=model_revision, **kwargs)
else:
raise NotImplementedError(f"unsupported model type [{model_type}]. only [funasr|ct-transformer] expected.")
def check_text_type(self,
text_data):
# funasr只支持单个str输入不支持list输入此处将list转化为字符串
if self.model_type == 'funasr':
if isinstance(text_data, str):
pass
elif isinstance(text_data, list):
text_data = ''.join(text_data)
else:
raise TypeError(f"text must be str or list, but got {type(list)}")
# ct-transformer支持list输入
# TODO 验证拆分字符串能否提高效率
elif self.model_type == 'ct-transformer':
if isinstance(text_data, str):
text_data = [text_data]
elif isinstance(text_data, list):
pass
else:
raise TypeError(f"text must be str or list, but got {type(list)}")
else:
pass
return text_data
def generate_cache(self, cache):
new_cache = {'pre_text': ""}
for text in cache['text']:
if text != '':
new_cache['pre_text'] = new_cache['pre_text']+text
return new_cache
def process(self,
text,
append_period=False,
cache={}):
if text == '':
return ''
text = self.check_text_type(text)
if self.model_type == 'funasr':
result = self.punc_model.generate(text)
elif self.model_type == 'ct-transformer':
if cache != {}:
cache = self.generate_cache(cache)
result = self.punc_model(text, cache=cache)
punced_text = ''
for res in result:
punced_text += res['text']
# 如果最后没有标点符号,手动加上。
if append_period and not punced_text[-1] in PUNCTUATION_MARK:
punced_text += ""
return punced_text
if __name__ == "__main__":
inputs = "把字符串拆分为list只|适用于ct-transformer模型|在数据处理部分|已经把list转为单个字符串"
"""
把字符串拆分为list只适用于ct-transformer模型,
在数据处理部分,已经把list转为单个字符串
"""
vads = inputs.split("|")
device = "cuda"
CTTRANSFORMER.update({"device": device})
puct_model = Punctuation(**CTTRANSFORMER)
result = puct_model.process(vads)
print(result)
# FUNASR.update({"device":"cuda"})
# puct_model = Punctuation(**FUNASR)
# result = puct_model.process(vads)
# print(result)

View File

@ -0,0 +1,86 @@
from modelscope.pipelines import pipeline
import numpy as np
import os
import pdb
ERES2NETV2 = {
"task": 'speaker-verification',
"model_name": 'damo/speech_eres2netv2_sv_zh-cn_16k-common',
"model_revision": 'v1.0.1',
"save_embeddings": False
}
# 保存 embedding 的路径
DEFALUT_SAVE_PATH = r"D:\python\irving\takway_base-main\examples"
class speaker_verfication:
def __init__(self,
task='speaker-verification',
model_name='damo/speech_eres2netv2_sv_zh-cn_16k-common',
model_revision='v1.0.1',
device="cuda",
save_embeddings=False):
self.pipeline = pipeline(
task=task,
model=model_name,
model_revision=model_revision,
device=device)
self.save_embeddings = save_embeddings
def wav2embeddings(self, speaker_1_wav, save_path=None):
result = self.pipeline([speaker_1_wav], output_emb=True)
speaker_1_emb = result['embs'][0]
if save_path is not None:
np.save(save_path, speaker_1_emb)
return speaker_1_emb
def _verifaction(self, speaker_1_wav, speaker_2_wav, threshold, save_path):
if not self.save_embeddings:
result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold)
return result["text"]
else:
result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold, output_emb=True)
speaker1_emb = result["embs"][0]
speaker2_emb = result["embs"][1]
np.save(os.path.join(save_path, "speaker_1.npy"), speaker1_emb)
return result['outputs']["text"]
def _verifaction_from_embedding(self, base_emb, speaker_2_wav, threshold):
base_emb = np.load(base_emb)
result = self.pipeline([speaker_2_wav], output_emb=True)
speaker2_emb = result["embs"][0]
similarity = np.dot(base_emb, speaker2_emb) / (np.linalg.norm(base_emb) * np.linalg.norm(speaker2_emb))
if similarity > threshold:
return "yes"
else:
return "no"
def verfication(self,
base_emb=None,
speaker_1_wav=None,
speaker_2_wav=None,
threshold=0.333,
save_path=None):
if base_emb is not None and speaker_1_wav is not None:
raise ValueError("Only need one of them, base_emb or speaker_1_wav")
if base_emb is not None and speaker_2_wav is not None:
return self._verifaction_from_embedding(base_emb, speaker_2_wav, threshold)
elif speaker_1_wav is not None and speaker_2_wav is not None:
return self._verifaction(speaker_1_wav, speaker_2_wav, threshold, save_path)
else:
raise NotImplementedError
if __name__ == '__main__':
verifier = speaker_verfication(**ERES2NETV2)
verifier = speaker_verfication(save_embeddings=False)
result = verifier.verfication(base_emb=None, speaker_1_wav=r"C:\Users\bing\Downloads\speaker1_a_cn_16k.wav",
speaker_2_wav=r"C:\Users\bing\Downloads\speaker2_a_cn_16k.wav",
threshold=0.333,
save_path=r"D:\python\irving\takway_base-main\savePath"
)
print("---")
print(result)
print(verifier.verfication(r"D:\python\irving\takway_base-main\savePath\speaker_1.npy",
speaker_2_wav=r"C:\Users\bing\Downloads\speaker1_b_cn_16k.wav",
threshold=0.333,
))

120
takway/stt/vosk_utils.py Normal file
View File

@ -0,0 +1,120 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ####################################################### #
# VOSKAutoSpeechRecognizer
# ####################################################### #
import json
import wave
import io
import os
from vosk import Model, KaldiRecognizer, SetLogLevel
from .base_stt import STTBase
from ..common_utils import decode_str2bytes
class VOSKAutoSpeechRecognizer(STTBase):
def __init__(self, model_path="vosk-model-small-cn-0.22", RATE=16000, cfg_path=None, efficent_mode=True, debug=False):
super().__init__(self, model_path=model_path, RATE=RATE, cfg_path=cfg_path, debug=debug)
self.asr_model = AutoModel(model="paraformer-zh-streaming")
self.apply_asr_config(self.asr_cfg)
def recognize_keywords(self, audio_data, partial_size=None, queue=None):
"""recognize keywords in audio data"""
audio_data = self.check_audio_type(audio_data)
if partial_size is None:
rec_result = self.recognize(audio_data, queue)
rec_text = self.result_postprecess(rec_result)
else:
rec_result = self.partial_recognize(audio_data, partial_size, queue)
rec_text = self.result_postprecess(rec_result, 'partial')
print(f"rec_text: {rec_text}")
if rec_text != '':
print(f"rec_text: {rec_text}")
if any(keyword in rec_text for keyword in self.keywords):
print("Keyword detected.")
return True, rec_text
else:
return False, None
def recognize(self, audio_data, queue=None):
"""recognize audio data to text"""
audio_data = self.check_audio_type(audio_data)
self.asr.AcceptWaveform(audio_data)
result = json.loads(self.asr.FinalResult())
# TODO: put result to queue
return result
def partial_recognize(self, audio_data, partial_size=1024, queue=None):
"""recognize partial result"""
audio_data = self.check_audio_type(audio_data)
text_dict = dict(
text=[],
partial=[],
final=[],
is_end=False)
# 逐个分割音频数据进行识别
for i in range(0, len(audio_data), partial_size):
# print(f"partial data: {i} - {i+partial_size}")
data = audio_data[i:i+partial_size]
if len(data) == 0:
break
if self.asr.AcceptWaveform(data):
result = json.loads(self.asr.Result())
if result['text'] != '':
text_dict['text'].append(result['text'])
if queue is not None:
queue.put(('stt_info', text_dict))
# print(f"text result: {result}")
else:
result = json.loads(self.asr.PartialResult())
if result['partial'] != '':
# text_dict['partial'].append(result['partial'])
text_dict['partial'] = [result['partial']]
if queue is not None:
queue.put(('stt_info', text_dict))
# print(f"partial result: {result}")
# final recognize
final_result = json.loads(self.asr.FinalResult())
if final_result['text'] != '':
text_dict['final'].append(final_result['text'])
text_dict['text'].append(final_result['text'])
text_dict['is_end'] = True
print(f"final dict: {text_dict}")
if queue is not None:
queue.put(('stt_info', text_dict))
return text_dict
if __name__ == "__main__":
'''
wav_file_path = "recording.wav"
# You can set log level to -1 to disable debug messages
SetLogLevel(0)
model = Model(model_path="vosk-model-small-cn-0.22")
# 调用函数进行录音
# record_audio(wav_file_path)
data = record_audio()
# 调用函数进行音频转写
result = audio_to_text(data, model)
print("-------------")
print(result)
'''
from takway.audio_utils import Recorder
rec = Recorder()
return_type = 'bytes'
data = rec.record(return_type)
print(type(data))
asr = AutoSpeechRecognizer()
# asr.recognize(data)
asr.add_keyword("你好")
asr.recognize_keywords(data)