2024-05-11 22:02:52 +08:00
|
|
|
from modelscope.pipelines import pipeline
|
|
|
|
import numpy as np
|
|
|
|
import os
|
|
|
|
import pdb
|
|
|
|
ERES2NETV2 = {
|
|
|
|
"task": 'speaker-verification',
|
|
|
|
"model_name": 'damo/speech_eres2netv2_sv_zh-cn_16k-common',
|
|
|
|
"model_revision": 'v1.0.1',
|
|
|
|
"save_embeddings": False
|
|
|
|
}
|
|
|
|
|
|
|
|
# 保存 embedding 的路径
|
2024-05-11 22:34:08 +08:00
|
|
|
DEFALUT_SAVE_PATH = r".\takway\savePath"
|
2024-05-11 22:02:52 +08:00
|
|
|
|
|
|
|
class speaker_verfication:
|
|
|
|
def __init__(self,
|
|
|
|
task='speaker-verification',
|
|
|
|
model_name='damo/speech_eres2netv2_sv_zh-cn_16k-common',
|
|
|
|
model_revision='v1.0.1',
|
|
|
|
device="cuda",
|
|
|
|
save_embeddings=False):
|
|
|
|
self.pipeline = pipeline(
|
|
|
|
task=task,
|
|
|
|
model=model_name,
|
|
|
|
model_revision=model_revision,
|
|
|
|
device=device)
|
|
|
|
self.save_embeddings = save_embeddings
|
|
|
|
|
|
|
|
def wav2embeddings(self, speaker_1_wav, save_path=None):
|
|
|
|
result = self.pipeline([speaker_1_wav], output_emb=True)
|
|
|
|
speaker_1_emb = result['embs'][0]
|
|
|
|
if save_path is not None:
|
|
|
|
np.save(save_path, speaker_1_emb)
|
|
|
|
return speaker_1_emb
|
|
|
|
|
|
|
|
def _verifaction(self, speaker_1_wav, speaker_2_wav, threshold, save_path):
|
|
|
|
if not self.save_embeddings:
|
|
|
|
result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold)
|
|
|
|
return result["text"]
|
|
|
|
else:
|
|
|
|
result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold, output_emb=True)
|
|
|
|
speaker1_emb = result["embs"][0]
|
|
|
|
speaker2_emb = result["embs"][1]
|
|
|
|
np.save(os.path.join(save_path, "speaker_1.npy"), speaker1_emb)
|
|
|
|
return result['outputs']["text"]
|
|
|
|
|
|
|
|
def _verifaction_from_embedding(self, base_emb, speaker_2_wav, threshold):
|
|
|
|
base_emb = np.load(base_emb)
|
|
|
|
result = self.pipeline([speaker_2_wav], output_emb=True)
|
|
|
|
speaker2_emb = result["embs"][0]
|
|
|
|
similarity = np.dot(base_emb, speaker2_emb) / (np.linalg.norm(base_emb) * np.linalg.norm(speaker2_emb))
|
|
|
|
if similarity > threshold:
|
|
|
|
return "yes"
|
|
|
|
else:
|
|
|
|
return "no"
|
|
|
|
|
|
|
|
def verfication(self,
|
|
|
|
base_emb=None,
|
|
|
|
speaker_1_wav=None,
|
|
|
|
speaker_2_wav=None,
|
|
|
|
threshold=0.333,
|
|
|
|
save_path=None):
|
|
|
|
if base_emb is not None and speaker_1_wav is not None:
|
|
|
|
raise ValueError("Only need one of them, base_emb or speaker_1_wav")
|
|
|
|
if base_emb is not None and speaker_2_wav is not None:
|
|
|
|
return self._verifaction_from_embedding(base_emb, speaker_2_wav, threshold)
|
|
|
|
elif speaker_1_wav is not None and speaker_2_wav is not None:
|
|
|
|
return self._verifaction(speaker_1_wav, speaker_2_wav, threshold, save_path)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
verifier = speaker_verfication(**ERES2NETV2)
|
|
|
|
|
|
|
|
verifier = speaker_verfication(save_embeddings=False)
|
|
|
|
result = verifier.verfication(base_emb=None, speaker_1_wav=r"C:\Users\bing\Downloads\speaker1_a_cn_16k.wav",
|
|
|
|
speaker_2_wav=r"C:\Users\bing\Downloads\speaker2_a_cn_16k.wav",
|
|
|
|
threshold=0.333,
|
|
|
|
save_path=r"D:\python\irving\takway_base-main\savePath"
|
|
|
|
)
|
|
|
|
print("---")
|
|
|
|
print(result)
|
|
|
|
print(verifier.verfication(r"D:\python\irving\takway_base-main\savePath\speaker_1.npy",
|
|
|
|
speaker_2_wav=r"C:\Users\bing\Downloads\speaker1_b_cn_16k.wav",
|
|
|
|
threshold=0.333,
|
|
|
|
))
|