1
0
Fork 0

1.将requesst库的http同步请求,修改为httpx的异步请求

2.将收到大模型返回消息后的响应改为同步处理
This commit is contained in:
killua4396 2024-05-04 11:26:14 +08:00
parent f1a844c84a
commit f11339ff92
1 changed files with 211 additions and 194 deletions

View File

@ -9,8 +9,8 @@ from utils.xf_asr_utils import generate_xf_asr_url
from config import get_config
import uuid
import json
import requests
import asyncio
import httpx
# 依赖注入获取logger
logger = get_logger()
@ -48,17 +48,27 @@ def get_session_content(session_id,redis,db):
#解析大模型流式返回内容
def parseChunkDelta(chunk):
decoded_data = chunk.decode('utf-8')
parsed_data = json.loads(decoded_data[6:])
if 'delta' in parsed_data['choices'][0]:
delta_content = parsed_data['choices'][0]['delta']
return delta_content['content']
else:
return ""
try:
if chunk == "":
return ""
chunk_json_str = chunk[6:]
parsed_data = json.loads(chunk_json_str)
if 'delta' in parsed_data['choices'][0]:
delta_content = parsed_data['choices'][0]['delta']
return delta_content['content']
else:
return "end"
except KeyError:
logger.error(f"error chunk: {chunk}")
#断句函数
def split_string_with_punctuation(current_sentence,text,is_first):
def split_string_with_punctuation(current_sentence,text,is_first,is_end):
result = []
if is_end:
if current_sentence:
result.append(current_sentence)
current_sentence = ''
return result, current_sentence, is_first
for char in text:
current_sentence += char
if is_first and char in ',.?!,。?!':
@ -210,8 +220,12 @@ async def sct_asr_handler(user_input_q,llm_input_q,user_input_finish_event):
logger.debug(f"接收到用户消息: {current_message}")
#大模型调用
async def sct_llm_handler(session_id,llm_info,db,redis,llm_input_q,llm_response_q,llm_response_finish_event):
async def sct_llm_handler(ws,session_id,response_type,llm_info,tts_info,db,redis,llm_input_q,chat_finished_event):
logger.debug("llm调用函数启动")
llm_response = ""
current_sentence = ""
is_first = True
is_end = False
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
current_message = await llm_input_q.get()
@ -228,13 +242,37 @@ async def sct_llm_handler(session_id,llm_info,db,redis,llm_input_q,llm_response_
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
response = requests.request("POST", Config.MINIMAX_LLM.URL, headers=headers, data=payload, stream=True)
if response.status_code == 200:
for chunk in response.iter_lines():
if chunk:
chunk_data = parseChunkDelta(chunk)
await llm_response_q.put(chunk_data)
llm_response_finish_event.set()
async with httpx.AsyncClient() as client:
response = await client.post(Config.MINIMAX_LLM.URL, headers=headers, data=payload)
async for chunk in response.aiter_lines():
chunk_data = parseChunkDelta(chunk)
is_end = chunk_data == "end"
if not is_end:
llm_response += chunk_data
sentences,current_sentence,is_first = split_string_with_punctuation(current_sentence,chunk_data,is_first,is_end)
for sentence in sentences:
if response_type == RESPONSE_TEXT:
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_text(json.dumps(response_message, ensure_ascii=False))
elif response_type == RESPONSE_AUDIO:
sr,audio = tts.synthesize(sentence, tts_info["speaker_id"], tts_info["language"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"],return_bytes=True)
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_bytes(audio)
await ws.send_text(json.dumps(response_message, ensure_ascii=False))
logger.debug(f"websocket返回: {sentence}")
if is_end:
logger.debug(f"llm返回结果: {llm_response}")
await ws.send_text(json.dumps({"type": "end", "code": 200, "msg": ""}, ensure_ascii=False))
is_end = False
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
messages.append({'role': 'assistant', "content": llm_response})
session_content["messages"] = json.dumps(messages,ensure_ascii=False) #更新对话
redis.set(session_id,json.dumps(session_content,ensure_ascii=False)) #更新session
is_first = True
llm_response = ""
chat_finished_event.set()
#大模型返回断句
async def sct_llm_response_handler(session_id,redis,db,llm_response_q,split_result_q,llm_response_finish_event):
@ -275,12 +313,9 @@ async def streaming_chat_temporary_handler(ws: WebSocket, db, redis):
logger.debug("streaming chat temporary websocket 连接建立")
user_input_q = asyncio.Queue() # 用于存储用户输入
llm_input_q = asyncio.Queue() # 用于存储llm输入
llm_response_q = asyncio.Queue() # 用于存储llm输出
split_result_q = asyncio.Queue() # 用于存储tts输出
user_input_finish_event = asyncio.Event()
llm_response_finish_event = asyncio.Event()
chat_finish_event = asyncio.Event()
chat_finished_event = asyncio.Event()
future_session_id = asyncio.Future()
future_response_type = asyncio.Future()
asyncio.create_task(sct_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,future_response_type,user_input_finish_event))
@ -292,11 +327,9 @@ async def streaming_chat_temporary_handler(ws: WebSocket, db, redis):
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
asyncio.create_task(sct_llm_handler(session_id,llm_info,db,redis,llm_input_q,llm_response_q,llm_response_finish_event))
asyncio.create_task(sct_llm_response_handler(session_id,redis,db,llm_response_q,split_result_q,llm_response_finish_event))
asyncio.create_task(sct_response_handler(ws,tts_info,response_type,split_result_q,llm_response_finish_event,chat_finish_event))
asyncio.create_task(sct_llm_handler(ws,session_id,response_type,llm_info,tts_info,db,redis,llm_input_q,chat_finished_event))
while not chat_finish_event.is_set():
while not chat_finished_event.is_set():
await asyncio.sleep(1)
await ws.send_text(json.dumps({"type": "close", "code": 200, "msg": ""}, ensure_ascii=False))
await ws.close()
@ -313,7 +346,7 @@ async def scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
while not input_finished_event.is_set():
try:
scl_data_json = json.loads(await ws.receive_text())
scl_data_json = json.loads(await asyncio.wait_for(ws.receive_text(),timeout=3))
if scl_data_json['is_close']:
input_finished_event.set()
break
@ -335,6 +368,9 @@ async def scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
if 'state' in scl_data_json and 'method' in scl_data_json:
logger.debug("收到心跳包")
continue
except asyncio.TimeoutError:
continue
#语音识别
@ -342,109 +378,90 @@ async def scl_asr_handler(user_input_q,llm_input_q,input_finished_event,asr_fini
logger.debug("语音识别函数启动")
current_message = ""
while not (input_finished_event.is_set() and user_input_q.empty()):
aduio_frame = await user_input_q.get()
if aduio_frame['is_end']:
asr_result = asr.streaming_recognize(aduio_frame['audio'], is_end=True)
current_message += ''.join(asr_result['text'])
await llm_input_q.put(current_message)
logger.debug(f"接收到用户消息: {current_message}")
else:
asr_result = asr.streaming_recognize(aduio_frame['audio'])
current_message += ''.join(asr_result['text'])
try:
aduio_frame = await asyncio.wait_for(user_input_q.get(),timeout=3)
if aduio_frame['is_end']:
asr_result = asr.streaming_recognize(aduio_frame['audio'], is_end=True)
current_message += ''.join(asr_result['text'])
await llm_input_q.put(current_message)
logger.debug(f"接收到用户消息: {current_message}")
else:
asr_result = asr.streaming_recognize(aduio_frame['audio'])
current_message += ''.join(asr_result['text'])
except asyncio.TimeoutError:
continue
asr_finished_event.set()
#大模型调用
async def scl_llm_handler(session_id,llm_info,db,redis,llm_input_q,llm_response_q,asr_finished_event,llm_finished_event):
async def scl_llm_handler(ws,session_id,response_type,llm_info,tts_info,db,redis,llm_input_q,asr_finished_event,chat_finished_event):
logger.debug("llm调用函数启动")
while not (asr_finished_event.is_set() and llm_input_q.empty()):
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
current_message = await llm_input_q.get()
messages.append({'role': 'user', "content": current_message})
payload = json.dumps({
"model": llm_info["model"],
"stream": True,
"messages": messages,
"max_tokens": 10000,
"temperature": llm_info["temperature"],
"top_p": llm_info["top_p"]
})
headers = {
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
response = requests.request("POST", Config.MINIMAX_LLM.URL, headers=headers, data=payload, stream=True)
if response.status_code == 200:
for chunk in response.iter_lines():
if chunk:
chunk_data = parseChunkDelta(chunk)
llm_frame = {"message": chunk_data, "is_end": False}
await llm_response_q.put(llm_frame)
llm_frame = {"message": "", "is_end": True}
await llm_response_q.put(llm_frame)
llm_finished_event.set()
#大模型返回断句
async def scl_llm_response_handler(session_id,redis,db,llm_response_q,split_result_q,llm_finished_event,split_finished_event):
logger.debug("llm返回处理函数启动")
llm_response = ""
current_sentence = ""
is_first = True
while not (llm_finished_event.is_set() and llm_response_q.empty()):
llm_frame = await llm_response_q.get()
llm_response += llm_frame['message']
sentences,current_sentence,is_first = split_string_with_punctuation(current_sentence,llm_frame['message'],is_first)
for sentence in sentences:
sentence_frame = {"message": sentence, "is_end": False}
await split_result_q.put(sentence_frame)
if llm_frame['is_end']:
sentence_frame = {"message": "", "is_end": True}
await split_result_q.put(sentence_frame)
is_first = True
is_end = False
while not (asr_finished_event.is_set() and llm_input_q.empty()):
try:
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
messages.append({'role': 'assistant', "content": llm_response})
session_content["messages"] = json.dumps(messages,ensure_ascii=False) #更新对话
redis.set(session_id,json.dumps(session_content,ensure_ascii=False)) #更新session
logger.debug(f"llm返回结果: {llm_response}")
llm_response = ""
current_sentence = ""
split_finished_event.set()
current_message = await asyncio.wait_for(llm_input_q.get(),timeout=3)
messages.append({'role': 'user', "content": current_message})
payload = json.dumps({
"model": llm_info["model"],
"stream": True,
"messages": messages,
"max_tokens": 10000,
"temperature": llm_info["temperature"],
"top_p": llm_info["top_p"]
})
headers = {
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
async with httpx.AsyncClient() as client:
response = await client.post(Config.MINIMAX_LLM.URL, headers=headers, data=payload)
async for chunk in response.aiter_lines():
chunk_data = parseChunkDelta(chunk)
is_end = chunk_data == "end"
if not is_end:
llm_response += chunk_data
sentences,current_sentence,is_first = split_string_with_punctuation(current_sentence,chunk_data,is_first,is_end)
for sentence in sentences:
if response_type == RESPONSE_TEXT:
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_text(json.dumps(response_message, ensure_ascii=False))
elif response_type == RESPONSE_AUDIO:
sr,audio = tts.synthesize(sentence, tts_info["speaker_id"], tts_info["language"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"],return_bytes=True)
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_bytes(audio)
await ws.send_text(json.dumps(response_message, ensure_ascii=False))
logger.debug(f"websocket返回: {sentence}")
if is_end:
logger.debug(f"llm返回结果: {llm_response}")
await ws.send_text(json.dumps({"type": "end", "code": 200, "msg": ""}, ensure_ascii=False))
is_end = False
#文本返回及语音合成
async def scl_response_handler(ws,tts_info,response_type,split_result_q,split_finished_event,chat_finish_event):
logger.debug("返回处理函数启动")
while not (split_finished_event.is_set() and split_result_q.empty()):
sentence_frame = await split_result_q.get()
sentence = sentence_frame['message']
if sentence_frame['is_end']:
await ws.send_text(json.dumps({"type": "end", "code": 200, "msg": ""}, ensure_ascii=False))
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
messages.append({'role': 'assistant', "content": llm_response})
session_content["messages"] = json.dumps(messages,ensure_ascii=False) #更新对话
redis.set(session_id,json.dumps(session_content,ensure_ascii=False)) #更新session
is_first = True
llm_response = ""
except asyncio.TimeoutError:
continue
if response_type == RESPONSE_TEXT:
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_text(json.dumps(response_message, ensure_ascii=False))
elif response_type == RESPONSE_AUDIO:
sr,audio = tts.synthesize(sentence, tts_info["speaker_id"], tts_info["language"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"],return_bytes=True)
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_bytes(audio)
await ws.send_text(json.dumps(response_message, ensure_ascii=False))
logger.debug(f"websocket返回: {sentence}")
chat_finish_event.set()
chat_finished_event.set()
async def streaming_chat_lasting_handler(ws,db,redis):
logger.debug("streaming chat lasting websocket 连接建立")
user_input_q = asyncio.Queue() # 用于存储用户输入
llm_input_q = asyncio.Queue() # 用于存储llm输入
llm_response_q = asyncio.Queue() # 用于存储llm输出
split_result_q = asyncio.Queue() # 用于存储llm返回后断句输出
input_finished_event = asyncio.Event()
asr_finished_event = asyncio.Event()
llm_finished_event = asyncio.Event()
split_finished_event = asyncio.Event()
chat_finish_event = asyncio.Event()
chat_finished_event = asyncio.Event()
future_session_id = asyncio.Future()
future_response_type = asyncio.Future()
asyncio.create_task(scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,future_response_type,input_finished_event))
asyncio.create_task(scl_asr_handler(user_input_q,llm_input_q,input_finished_event,asr_finished_event))
@ -453,11 +470,9 @@ async def streaming_chat_lasting_handler(ws,db,redis):
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
asyncio.create_task(scl_llm_handler(session_id,llm_info,db,redis,llm_input_q,llm_response_q,asr_finished_event,llm_finished_event))
asyncio.create_task(scl_llm_response_handler(session_id,redis,db,llm_response_q,split_result_q,llm_finished_event,split_finished_event))
asyncio.create_task(scl_response_handler(ws,tts_info,response_type,split_result_q,split_finished_event,chat_finish_event))
asyncio.create_task(scl_llm_handler(ws,session_id,response_type,llm_info,tts_info,db,redis,llm_input_q,asr_finished_event,chat_finished_event))
while not chat_finish_event.is_set():
while not chat_finished_event.is_set():
await asyncio.sleep(3)
await ws.send_text(json.dumps({"type": "close", "code": 200, "msg": ""}, ensure_ascii=False))
await ws.close()
@ -474,7 +489,7 @@ async def voice_call_audio_producer(ws,audio_q,future,input_finished_event):
audio_data = ""
while not input_finished_event.is_set():
try:
voice_call_data_json = json.loads(await ws.receive_text())
voice_call_data_json = json.loads(await asyncio.wait_for(ws.receive_text(),timeout=3))
if not is_future_done: #在第一次循环中读取session_id
future.set_result(voice_call_data_json['meta_info']['session_id'])
is_future_done = True
@ -488,6 +503,9 @@ async def voice_call_audio_producer(ws,audio_q,future,input_finished_event):
await audio_q.put(vad_frame) #将音频数据存入audio_q
except KeyError as ke:
logger.info(f"收到心跳包")
except asyncio.TimeoutError:
continue
#音频数据消费函数
async def voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event,asr_finished_event):
@ -496,93 +514,98 @@ async def voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event
current_message = ""
vad_count = 0
while not (input_finished_event.is_set() and audio_q.empty()):
audio_data = await audio_q.get()
if vad.is_speech(audio_data):
if vad_count > 0:
vad_count -= 1
asr_result = asr.streaming_recognize(audio_data)
current_message += ''.join(asr_result['text'])
else:
vad_count += 1
if vad_count >= 25: #连续25帧没有语音则认为说完了
asr_result = asr.streaming_recognize(audio_data, is_end=True)
if current_message:
logger.debug(f"检测到静默,用户输入为:{current_message}")
await asr_result_q.put(current_message)
text_response = {"type": "user_text", "code": 200, "msg": current_message}
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
current_message = ""
vad_count = 0
try:
audio_data = await asyncio.wait_for(audio_q.get(),timeout=3)
if vad.is_speech(audio_data):
if vad_count > 0:
vad_count -= 1
asr_result = asr.streaming_recognize(audio_data)
current_message += ''.join(asr_result['text'])
else:
vad_count += 1
if vad_count >= 25: #连续25帧没有语音则认为说完了
asr_result = asr.streaming_recognize(audio_data, is_end=True)
if current_message:
logger.debug(f"检测到静默,用户输入为:{current_message}")
await asr_result_q.put(current_message)
text_response = {"type": "user_text", "code": 200, "msg": current_message}
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
current_message = ""
vad_count = 0
except asyncio.TimeoutError:
continue
asr_finished_event.set()
#asr结果消费以及llm返回生产函数
async def voice_call_llm_handler(session_id,llm_info,redis,db,asr_result_q,llm_response_q,asr_finished_event,llm_finished_event):
async def voice_call_llm_handler(ws,session_id,llm_info,tts_info,db,redis,asr_result_q,asr_finished_event,voice_call_end_event):
logger.debug("asr结果消费以及llm返回生产函数启动")
while not (asr_finished_event.is_set() and asr_result_q.empty()):
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
current_message = await asr_result_q.get()
messages.append({'role': 'user', "content": current_message})
payload = json.dumps({
"model": llm_info["model"],
"stream": True,
"messages": messages,
"max_tokens":10000,
"temperature": llm_info["temperature"],
"top_p": llm_info["top_p"]
})
headers = {
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
response = requests.request("POST", Config.MINIMAX_LLM.URL, headers=headers, data=payload, stream=True)
if response.status_code == 200:
for chunk in response.iter_lines():
if chunk:
chunk_data =parseChunkDelta(chunk)
llm_frame = {'message':chunk_data,'is_end':False}
await llm_response_q.put(llm_frame)
llm_frame = {'message':"",'is_end':True}
await llm_response_q.put(llm_frame)
llm_finished_event.set()
#llm结果返回函数
async def voice_call_llm_response_consumer(session_id,redis,db,llm_response_q,split_result_q,llm_finished_event,split_finished_event):
logger.debug("llm结果返回函数启动")
llm_response = ""
current_sentence = ""
is_first = True
while not (llm_finished_event.is_set() and llm_response_q.empty()):
llm_frame = await llm_response_q.get()
llm_response += llm_frame['message']
sentences,current_sentence,is_first = split_string_with_punctuation(current_sentence,llm_frame['message'],is_first)
for sentence in sentences:
await split_result_q.put(sentence)
if llm_frame['is_end']:
is_first = True
is_end = False
while not (asr_finished_event.is_set() and asr_result_q.empty()):
try:
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
messages.append({'role': 'assistant', "content": llm_response})
session_content["messages"] = json.dumps(messages,ensure_ascii=False) #更新对话
redis.set(session_id,json.dumps(session_content,ensure_ascii=False)) #更新session
logger.debug(f"llm返回结果: {llm_response}")
llm_response = ""
current_sentence = ""
split_finished_event.set()
current_message = await asyncio.wait_for(asr_result_q.get(),timeout=3)
messages.append({'role': 'user', "content": current_message})
payload = json.dumps({
"model": llm_info["model"],
"stream": True,
"messages": messages,
"max_tokens":10000,
"temperature": llm_info["temperature"],
"top_p": llm_info["top_p"]
})
headers = {
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
async with httpx.AsyncClient() as client:
response = await client.post(Config.MINIMAX_LLM.URL, headers=headers, data=payload)
async for chunk in response.aiter_lines():
chunk_data = parseChunkDelta(chunk)
is_end = chunk_data == "end"
if not is_end:
llm_response += chunk_data
sentences,current_sentence,is_first = split_string_with_punctuation(current_sentence,chunk_data,is_first,is_end)
for sentence in sentences:
sr,audio = tts.synthesize(sentence, tts_info["language"], tts_info["speaker_id"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"], return_bytes=True)
text_response = {"type": "llm_text", "code": 200, "msg": sentence}
await ws.send_bytes(audio) #返回音频二进制流数据
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
logger.debug(f"llm返回结果: {sentence}")
if is_end:
logger.debug(f"llm返回结果: {llm_response}")
await ws.send_text(json.dumps({"type": "end", "code": 200, "msg": ""}, ensure_ascii=False))
is_end = False
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
messages.append({'role': 'assistant', "content": llm_response})
session_content["messages"] = json.dumps(messages,ensure_ascii=False) #更新对话
redis.set(session_id,json.dumps(session_content,ensure_ascii=False)) #更新session
is_first = True
llm_response = ""
except asyncio.TimeoutError:
continue
voice_call_end_event.set()
#语音合成及返回函数
async def voice_call_tts_handler(ws,tts_info,split_result_q,split_finished_event,voice_call_end_event):
logger.debug("语音合成及返回函数启动")
while not (split_finished_event.is_set() and split_result_q.empty()):
sentence = await split_result_q.get()
sr,audio = tts.synthesize(sentence, tts_info["language"], tts_info["speaker_id"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"], return_bytes=True)
text_response = {"type": "llm_text", "code": 200, "msg": sentence}
await ws.send_bytes(audio) #返回音频二进制流数据
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
logger.debug(f"websocket返回:{sentence}")
asyncio.sleep(0.5)
await ws.close()
try:
sentence = await asyncio.wait_for(split_result_q.get(),timeout=3)
sr,audio = tts.synthesize(sentence, tts_info["language"], tts_info["speaker_id"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"], return_bytes=True)
text_response = {"type": "llm_text", "code": 200, "msg": sentence}
await ws.send_bytes(audio) #返回音频二进制流数据
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
logger.debug(f"websocket返回:{sentence}")
except asyncio.TimeoutError:
continue
voice_call_end_event.set()
@ -590,13 +613,10 @@ async def voice_call_handler(ws, db, redis):
logger.debug("voice_call websocket 连接建立")
audio_q = asyncio.Queue() #音频队列
asr_result_q = asyncio.Queue() #语音识别结果队列
llm_response_q = asyncio.Queue() #大模型返回队列
split_result_q = asyncio.Queue() #断句结果队列
input_finished_event = asyncio.Event() #用户输入结束事件
asr_finished_event = asyncio.Event() #语音识别结束事件
llm_finished_event = asyncio.Event() #大模型结束事件
split_finished_event = asyncio.Event() #断句结束事件
voice_call_end_event = asyncio.Event() #语音电话终止事件
future = asyncio.Future() #用于获取传输的session_id
@ -608,10 +628,7 @@ async def voice_call_handler(ws, db, redis):
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
asyncio.create_task(voice_call_llm_handler(session_id,llm_info,redis,db,asr_result_q,llm_response_q,asr_finished_event,llm_finished_event)) #创建llm处理者
asyncio.create_task(voice_call_llm_response_consumer(session_id,redis,db,llm_response_q,split_result_q,llm_finished_event,split_finished_event)) #创建llm断句结果
asyncio.create_task(voice_call_tts_handler(ws,tts_info,split_result_q,split_finished_event,voice_call_end_event)) #返回tts音频结果
asyncio.create_task(voice_call_llm_handler(ws,session_id,llm_info,tts_info,db,redis,asr_result_q,asr_finished_event,voice_call_end_event)) #创建llm处理者
while not voice_call_end_event.is_set():
await asyncio.sleep(3)
await ws.close()