1
0
Fork 0

[update] 更新funasr parformer_streaming cache管理,增加seesion_id字段

This commit is contained in:
IrvingGao 2024-05-15 21:56:10 +08:00
parent bd893a4599
commit d930e71410
1 changed files with 79 additions and 3 deletions

View File

@ -79,9 +79,9 @@ class FunAutoSpeechRecognizer(STTBase):
def _init_asr(self):
# 随机初始化一段音频数据
init_audio_data = np.random.randint(-32768, 32767, size=self.chunk_partial_size, dtype=np.int16)
self.asr_model.generate(input=init_audio_data, cache=self.asr_cache, is_final=False, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
self.audio_cache = {}
self.asr_cache = {}
self.session_signup("init")
self.asr_model.generate(input=init_audio_data, cache=self.asr_cache, is_final=False, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back, session_id="init")
self.session_signout("init")
# print("init ASR model done.")
# when chat trying to use asr , sign up
@ -108,6 +108,82 @@ class FunAutoSpeechRecognizer(STTBase):
"""
text_dict = dict(text=[], is_end=is_end)
audio_cache = self.audio_cache[session_id]
# asr_cache = self.asr_cache[session_id]
audio_data = self.check_audio_type(audio_data)
if audio_cache is None:
audio_cache = audio_data
else:
if audio_cache.shape[0] > 0:
audio_cache = np.concatenate([audio_cache, audio_data], axis=0)
if not is_end and audio_cache.shape[0] < self.chunk_partial_size:
self.audio_cache[session_id] = audio_cache
return text_dict
total_chunk_num = int((len(audio_cache)-1)/self.chunk_partial_size)
if is_end:
# if the audio data is the end of a sentence, \
# we need to add one more chunk to the end to \
# ensure the end of the sentence is recognized correctly.
auto_det_end = True
if auto_det_end:
total_chunk_num += 1
end_idx = None
for i in range(total_chunk_num):
if auto_det_end:
is_end = i == total_chunk_num - 1
start_idx = i*self.chunk_partial_size
if auto_det_end:
end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num-1 else -1
else:
end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num else -1
# print(f"cut part: {start_idx}:{end_idx}, is_end: {is_end}, i: {i}, total_chunk_num: {total_chunk_num}")
# t_stamp = time.time()
speech_chunk = audio_cache[start_idx:end_idx]
# TODO: exceptions processes
print("i:", i)
try:
res = self.asr_model.generate(input=speech_chunk, cache=self.asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back, session_id=session_id)
except ValueError as e:
print(f"ValueError: {e}")
continue
text_dict['text'].append(self.text_postprecess(res[0], data_id='text'))
# print(f"each chunk time: {time.time()-t_stamp}")
if is_end:
audio_cache = None
asr_cache = {}
else:
if end_idx:
audio_cache = audio_cache[end_idx:] # cut the processed part from audio_cache
text_dict['is_end'] = is_end
self.audio_cache[session_id] = audio_cache
# self.asr_cache[session_id] = asr_cache
return text_dict
def streaming_recognize_origin(self,
session_id,
audio_data,
is_end=False,
auto_det_end=False):
"""recognize partial result
Args:
audio_data: bytes or numpy array, partial audio data
is_end: bool, whether the audio data is the end of a sentence
auto_det_end: bool, whether to automatically detect the end of a audio data
"""
text_dict = dict(text=[], is_end=is_end)
audio_cache = self.audio_cache[session_id]
asr_cache = self.asr_cache[session_id]