forked from killua/TakwayPlatform
feat: 使全局asr实例有一定并发能力
This commit is contained in:
parent
11c429befa
commit
4974570f20
|
@ -223,18 +223,24 @@ async def sct_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
|
|||
logger.error(f"用户输入处理函数发生错误: {str(e)}")
|
||||
|
||||
#语音识别
|
||||
async def sct_asr_handler(user_input_q,llm_input_q,user_input_finish_event):
|
||||
async def sct_asr_handler(session_id,user_input_q,llm_input_q,user_input_finish_event):
|
||||
logger.debug("语音识别函数启动")
|
||||
is_signup = False
|
||||
try:
|
||||
current_message = ""
|
||||
while not (user_input_finish_event.is_set() and user_input_q.empty()):
|
||||
if not is_signup:
|
||||
asr.session_signup(session_id)
|
||||
is_signup = True
|
||||
audio_data = await user_input_q.get()
|
||||
asr_result = asr.streaming_recognize(audio_data)
|
||||
asr_result = asr.streaming_recognize(session_id,audio_data)
|
||||
current_message += ''.join(asr_result['text'])
|
||||
asr_result = asr.streaming_recognize(b'',is_end=True)
|
||||
asr_result = asr.streaming_recognize(session_id,b'',is_end=True)
|
||||
current_message += ''.join(asr_result['text'])
|
||||
await llm_input_q.put(current_message)
|
||||
asr.session_signout(session_id)
|
||||
except Exception as e:
|
||||
asr.session_signout(session_id)
|
||||
logger.error(f"语音识别函数发生错误: {str(e)}")
|
||||
logger.debug(f"接收到用户消息: {current_message}")
|
||||
|
||||
|
@ -305,12 +311,11 @@ async def streaming_chat_temporary_handler(ws: WebSocket, db, redis):
|
|||
future_session_id = asyncio.Future()
|
||||
future_response_type = asyncio.Future()
|
||||
asyncio.create_task(sct_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,future_response_type,user_input_finish_event))
|
||||
asyncio.create_task(sct_asr_handler(user_input_q,llm_input_q,user_input_finish_event))
|
||||
|
||||
|
||||
session_id = await future_session_id #获取session_id
|
||||
update_session_activity(session_id,db)
|
||||
response_type = await future_response_type #获取返回类型
|
||||
asyncio.create_task(sct_asr_handler(session_id,user_input_q,llm_input_q,user_input_finish_event))
|
||||
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
|
||||
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
|
||||
|
||||
|
@ -346,6 +351,7 @@ async def scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
|
|||
is_future_done = True
|
||||
if scl_data_json['text']:
|
||||
await llm_input_q.put(scl_data_json['text'])
|
||||
continue
|
||||
if scl_data_json['meta_info']['is_end']:
|
||||
user_input_frame = {"audio": scl_data_json['audio'], "is_end": True}
|
||||
await user_input_q.put(user_input_frame)
|
||||
|
@ -362,25 +368,31 @@ async def scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
|
|||
break
|
||||
|
||||
#语音识别
|
||||
async def scl_asr_handler(user_input_q,llm_input_q,input_finished_event,asr_finished_event):
|
||||
async def scl_asr_handler(session_id,user_input_q,llm_input_q,input_finished_event,asr_finished_event):
|
||||
logger.debug("语音识别函数启动")
|
||||
is_signup = False
|
||||
current_message = ""
|
||||
while not (input_finished_event.is_set() and user_input_q.empty()):
|
||||
try:
|
||||
aduio_frame = await asyncio.wait_for(user_input_q.get(),timeout=3)
|
||||
if not is_signup:
|
||||
asr.session_signup(session_id)
|
||||
is_signup = True
|
||||
if aduio_frame['is_end']:
|
||||
asr_result = asr.streaming_recognize(aduio_frame['audio'], is_end=True)
|
||||
asr_result = asr.streaming_recognize(session_id,aduio_frame['audio'], is_end=True)
|
||||
current_message += ''.join(asr_result['text'])
|
||||
await llm_input_q.put(current_message)
|
||||
logger.debug(f"接收到用户消息: {current_message}")
|
||||
else:
|
||||
asr_result = asr.streaming_recognize(aduio_frame['audio'])
|
||||
asr_result = asr.streaming_recognize(session_id,aduio_frame['audio'])
|
||||
current_message += ''.join(asr_result['text'])
|
||||
except asyncio.TimeoutError:
|
||||
continue
|
||||
except Exception as e:
|
||||
asr.session_signout(session_id)
|
||||
logger.error(f"语音识别函数发生错误: {str(e)}")
|
||||
break
|
||||
asr.session_signout(session_id)
|
||||
asr_finished_event.set()
|
||||
|
||||
#大模型调用
|
||||
|
@ -455,7 +467,6 @@ async def streaming_chat_lasting_handler(ws,db,redis):
|
|||
future_response_type = asyncio.Future()
|
||||
|
||||
asyncio.create_task(scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,future_response_type,input_finished_event))
|
||||
asyncio.create_task(scl_asr_handler(user_input_q,llm_input_q,input_finished_event,asr_finished_event))
|
||||
|
||||
session_id = await future_session_id #获取session_id
|
||||
update_session_activity(session_id,db)
|
||||
|
@ -463,6 +474,7 @@ async def streaming_chat_lasting_handler(ws,db,redis):
|
|||
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
|
||||
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
|
||||
|
||||
asyncio.create_task(scl_asr_handler(session_id,user_input_q,llm_input_q,input_finished_event,asr_finished_event))
|
||||
asyncio.create_task(scl_llm_handler(ws,session_id,response_type,llm_info,tts_info,db,redis,llm_input_q,asr_finished_event,chat_finished_event))
|
||||
|
||||
while not chat_finished_event.is_set():
|
||||
|
@ -505,23 +517,27 @@ async def voice_call_audio_producer(ws,audio_q,future,input_finished_event):
|
|||
|
||||
|
||||
#音频数据消费函数
|
||||
async def voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event,asr_finished_event):
|
||||
async def voice_call_audio_consumer(ws,session_id,audio_q,asr_result_q,input_finished_event,asr_finished_event):
|
||||
logger.debug("音频数据消费者函数启动")
|
||||
vad = VAD()
|
||||
current_message = ""
|
||||
vad_count = 0
|
||||
is_signup = False
|
||||
while not (input_finished_event.is_set() and audio_q.empty()):
|
||||
try:
|
||||
if not is_signup:
|
||||
asr.session_signup(session_id)
|
||||
is_signup = True
|
||||
audio_data = await asyncio.wait_for(audio_q.get(),timeout=3)
|
||||
if vad.is_speech(audio_data):
|
||||
if vad_count > 0:
|
||||
vad_count -= 1
|
||||
asr_result = asr.streaming_recognize(audio_data)
|
||||
asr_result = asr.streaming_recognize(session_id, audio_data)
|
||||
current_message += ''.join(asr_result['text'])
|
||||
else:
|
||||
vad_count += 1
|
||||
if vad_count >= 25: #连续25帧没有语音,则认为说完了
|
||||
asr_result = asr.streaming_recognize(audio_data, is_end=True)
|
||||
asr_result = asr.streaming_recognize(session_id, audio_data, is_end=True)
|
||||
if current_message:
|
||||
logger.debug(f"检测到静默,用户输入为:{current_message}")
|
||||
await asr_result_q.put(current_message)
|
||||
|
@ -532,8 +548,10 @@ async def voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event
|
|||
except asyncio.TimeoutError:
|
||||
continue
|
||||
except Exception as e:
|
||||
asr.session_signout(session_id)
|
||||
logger.error(f"音频数据消费者函数发生错误: {str(e)}")
|
||||
break
|
||||
asr.session_signout(session_id)
|
||||
asr_finished_event.set()
|
||||
|
||||
#asr结果消费以及llm返回生产函数
|
||||
|
@ -621,7 +639,6 @@ async def voice_call_handler(ws, db, redis):
|
|||
|
||||
future = asyncio.Future() #用于获取传输的session_id
|
||||
asyncio.create_task(voice_call_audio_producer(ws,audio_q,future,input_finished_event)) #创建音频数据生产者
|
||||
asyncio.create_task(voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event,asr_finished_event)) #创建音频数据消费者
|
||||
|
||||
#获取session内容
|
||||
session_id = await future #获取session_id
|
||||
|
@ -629,6 +646,7 @@ async def voice_call_handler(ws, db, redis):
|
|||
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
|
||||
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
|
||||
|
||||
asyncio.create_task(voice_call_audio_consumer(ws,session_id,audio_q,asr_result_q,input_finished_event,asr_finished_event)) #创建音频数据消费者
|
||||
asyncio.create_task(voice_call_llm_handler(ws,session_id,llm_info,tts_info,db,redis,asr_result_q,asr_finished_event,voice_call_end_event)) #创建llm处理者
|
||||
while not voice_call_end_event.is_set():
|
||||
await asyncio.sleep(3)
|
||||
|
|
|
@ -41,11 +41,12 @@ class FunAutoSpeechRecognizer(STTBase):
|
|||
self.chunk_size = [0, 10, 5]
|
||||
else:
|
||||
raise ValueError("`chunk_ms` should be 480 or 600, and type is int.")
|
||||
self.chunk_partial_size = self.chunk_size[1] * 960
|
||||
self.audio_cache = None
|
||||
self.chunk_partial_size = self.chunk_size[1] * 960
|
||||
self.audio_cache = {}
|
||||
self.asr_cache = {}
|
||||
|
||||
|
||||
|
||||
# self.audio_cache = None
|
||||
# self.asr_cache = {}
|
||||
|
||||
self._init_asr()
|
||||
|
||||
|
@ -79,24 +80,22 @@ class FunAutoSpeechRecognizer(STTBase):
|
|||
# 随机初始化一段音频数据
|
||||
init_audio_data = np.random.randint(-32768, 32767, size=self.chunk_partial_size, dtype=np.int16)
|
||||
self.asr_model.generate(input=init_audio_data, cache=self.asr_cache, is_final=False, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
|
||||
self.audio_cache = None
|
||||
self.audio_cache = {}
|
||||
self.asr_cache = {}
|
||||
# print("init ASR model done.")
|
||||
|
||||
def recognize(self, audio_data):
|
||||
"""recognize audio data to text"""
|
||||
audio_data = self.check_audio_type(audio_data)
|
||||
result = self.asr_model.generate(input=audio_data,
|
||||
batch_size_s=300,
|
||||
hotword=self.hotwords)
|
||||
|
||||
# print(result)
|
||||
text = ''
|
||||
for res in result:
|
||||
text += res['text']
|
||||
return text
|
||||
|
||||
def streaming_recognize(self,
|
||||
# when chat trying to use asr , sign up
|
||||
def session_signup(self,session_id):
|
||||
self.audio_cache[session_id] = None
|
||||
self.asr_cache[session_id] = {}
|
||||
|
||||
# when chat finish using asr , sign out
|
||||
def session_signout(self,session_id):
|
||||
del self.audio_cache[session_id]
|
||||
del self.asr_cache[session_id]
|
||||
|
||||
def streaming_recognize(self,
|
||||
session_id,
|
||||
audio_data,
|
||||
is_end=False,
|
||||
auto_det_end=False):
|
||||
|
@ -108,19 +107,22 @@ class FunAutoSpeechRecognizer(STTBase):
|
|||
auto_det_end: bool, whether to automatically detect the end of a audio data
|
||||
"""
|
||||
text_dict = dict(text=[], is_end=is_end)
|
||||
|
||||
audio_cache = self.audio_cache[session_id]
|
||||
asr_cache = self.asr_cache[session_id]
|
||||
|
||||
audio_data = self.check_audio_type(audio_data)
|
||||
if self.audio_cache is None:
|
||||
self.audio_cache = audio_data
|
||||
if audio_cache is None:
|
||||
audio_cache = audio_data
|
||||
else:
|
||||
# print(f"audio_data: {audio_data.shape}, audio_cache: {self.audio_cache.shape}")
|
||||
if self.audio_cache.shape[0] > 0:
|
||||
self.audio_cache = np.concatenate([self.audio_cache, audio_data], axis=0)
|
||||
if audio_cache.shape[0] > 0:
|
||||
audio_cache = np.concatenate([audio_cache, audio_data], axis=0)
|
||||
|
||||
if not is_end and self.audio_cache.shape[0] < self.chunk_partial_size:
|
||||
if not is_end and audio_cache.shape[0] < self.chunk_partial_size:
|
||||
self.audio_cache[session_id] = audio_cache
|
||||
return text_dict
|
||||
|
||||
total_chunk_num = int((len(self.audio_cache)-1)/self.chunk_partial_size)
|
||||
total_chunk_num = int((len(audio_cache)-1)/self.chunk_partial_size)
|
||||
|
||||
if is_end:
|
||||
# if the audio data is the end of a sentence, \
|
||||
|
@ -131,7 +133,6 @@ class FunAutoSpeechRecognizer(STTBase):
|
|||
if auto_det_end:
|
||||
total_chunk_num += 1
|
||||
|
||||
# print(f"chunk_size: {self.chunk_size}, chunk_stride: {self.chunk_partial_size}, total_chunk_num: {total_chunk_num}, len: {len(self.audio_cache)}")
|
||||
end_idx = None
|
||||
for i in range(total_chunk_num):
|
||||
if auto_det_end:
|
||||
|
@ -144,11 +145,11 @@ class FunAutoSpeechRecognizer(STTBase):
|
|||
# print(f"cut part: {start_idx}:{end_idx}, is_end: {is_end}, i: {i}, total_chunk_num: {total_chunk_num}")
|
||||
# t_stamp = time.time()
|
||||
|
||||
speech_chunk = self.audio_cache[start_idx:end_idx]
|
||||
speech_chunk = audio_cache[start_idx:end_idx]
|
||||
|
||||
# TODO: exceptions processes
|
||||
try:
|
||||
res = self.asr_model.generate(input=speech_chunk, cache=self.asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
|
||||
res = self.asr_model.generate(input=speech_chunk, cache=asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
|
||||
except ValueError as e:
|
||||
print(f"ValueError: {e}")
|
||||
continue
|
||||
|
@ -156,15 +157,186 @@ class FunAutoSpeechRecognizer(STTBase):
|
|||
# print(f"each chunk time: {time.time()-t_stamp}")
|
||||
|
||||
if is_end:
|
||||
self.audio_cache = None
|
||||
self.asr_cache = {}
|
||||
audio_cache = None
|
||||
asr_cache = {}
|
||||
else:
|
||||
if end_idx:
|
||||
self.audio_cache = self.audio_cache[end_idx:] # cut the processed part from audio_cache
|
||||
audio_cache = audio_cache[end_idx:] # cut the processed part from audio_cache
|
||||
text_dict['is_end'] = is_end
|
||||
|
||||
# print(f"text_dict: {text_dict}")
|
||||
|
||||
self.audio_cache[session_id] = audio_cache
|
||||
self.asr_cache[session_id] = asr_cache
|
||||
return text_dict
|
||||
|
||||
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
# ####################################################### #
|
||||
# FunAutoSpeechRecognizer: https://github.com/alibaba-damo-academy/FunASR
|
||||
# ####################################################### #
|
||||
# import io
|
||||
# import numpy as np
|
||||
# import base64
|
||||
# import wave
|
||||
# from funasr import AutoModel
|
||||
# from .base_stt import STTBase
|
||||
|
||||
# def decode_str2bytes(data):
|
||||
# # 将Base64编码的字节串解码为字节串
|
||||
# if data is None:
|
||||
# return None
|
||||
# return base64.b64decode(data.encode('utf-8'))
|
||||
|
||||
# class FunAutoSpeechRecognizer(STTBase):
|
||||
# def __init__(self,
|
||||
# model_path="paraformer-zh-streaming",
|
||||
# device="cuda",
|
||||
# RATE=16000,
|
||||
# cfg_path=None,
|
||||
# debug=False,
|
||||
# chunk_ms=480,
|
||||
# encoder_chunk_look_back=4,
|
||||
# decoder_chunk_look_back=1,
|
||||
# **kwargs):
|
||||
# super().__init__(RATE=RATE, cfg_path=cfg_path, debug=debug)
|
||||
|
||||
# self.asr_model = AutoModel(model=model_path, device=device, **kwargs)
|
||||
|
||||
# self.encoder_chunk_look_back = encoder_chunk_look_back #number of chunks to lookback for encoder self-attention
|
||||
# self.decoder_chunk_look_back = decoder_chunk_look_back #number of encoder chunks to lookback for decoder cross-attention
|
||||
|
||||
# #[0, 8, 4] 480ms, [0, 10, 5] 600ms
|
||||
# if chunk_ms == 480:
|
||||
# self.chunk_size = [0, 8, 4]
|
||||
# elif chunk_ms == 600:
|
||||
# self.chunk_size = [0, 10, 5]
|
||||
# else:
|
||||
# raise ValueError("`chunk_ms` should be 480 or 600, and type is int.")
|
||||
# self.chunk_partial_size = self.chunk_size[1] * 960
|
||||
# self.audio_cache = None
|
||||
# self.asr_cache = {}
|
||||
|
||||
|
||||
|
||||
# self._init_asr()
|
||||
|
||||
# def check_audio_type(self, audio_data):
|
||||
# """check audio data type and convert it to bytes if necessary."""
|
||||
# if isinstance(audio_data, bytes):
|
||||
# pass
|
||||
# elif isinstance(audio_data, list):
|
||||
# audio_data = b''.join(audio_data)
|
||||
# elif isinstance(audio_data, str):
|
||||
# audio_data = decode_str2bytes(audio_data)
|
||||
# elif isinstance(audio_data, io.BytesIO):
|
||||
# wf = wave.open(audio_data, 'rb')
|
||||
# audio_data = wf.readframes(wf.getnframes())
|
||||
# elif isinstance(audio_data, np.ndarray):
|
||||
# pass
|
||||
# else:
|
||||
# raise TypeError(f"audio_data must be bytes, list, str, \
|
||||
# io.BytesIO or numpy array, but got {type(audio_data)}")
|
||||
|
||||
# if isinstance(audio_data, bytes):
|
||||
# audio_data = np.frombuffer(audio_data, dtype=np.int16)
|
||||
# elif isinstance(audio_data, np.ndarray):
|
||||
# if audio_data.dtype != np.int16:
|
||||
# audio_data = audio_data.astype(np.int16)
|
||||
# else:
|
||||
# raise TypeError(f"audio_data must be bytes or numpy array, but got {type(audio_data)}")
|
||||
# return audio_data
|
||||
|
||||
# def _init_asr(self):
|
||||
# # 随机初始化一段音频数据
|
||||
# init_audio_data = np.random.randint(-32768, 32767, size=self.chunk_partial_size, dtype=np.int16)
|
||||
# self.asr_model.generate(input=init_audio_data, cache=self.asr_cache, is_final=False, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
|
||||
# self.audio_cache = None
|
||||
# self.asr_cache = {}
|
||||
# # print("init ASR model done.")
|
||||
|
||||
# def recognize(self, audio_data):
|
||||
# """recognize audio data to text"""
|
||||
# audio_data = self.check_audio_type(audio_data)
|
||||
# result = self.asr_model.generate(input=audio_data,
|
||||
# batch_size_s=300,
|
||||
# hotword=self.hotwords)
|
||||
|
||||
# # print(result)
|
||||
# text = ''
|
||||
# for res in result:
|
||||
# text += res['text']
|
||||
# return text
|
||||
|
||||
# def streaming_recognize(self,
|
||||
# audio_data,
|
||||
# is_end=False,
|
||||
# auto_det_end=False):
|
||||
# """recognize partial result
|
||||
|
||||
# Args:
|
||||
# audio_data: bytes or numpy array, partial audio data
|
||||
# is_end: bool, whether the audio data is the end of a sentence
|
||||
# auto_det_end: bool, whether to automatically detect the end of a audio data
|
||||
# """
|
||||
# text_dict = dict(text=[], is_end=is_end)
|
||||
|
||||
# audio_data = self.check_audio_type(audio_data)
|
||||
# if self.audio_cache is None:
|
||||
# self.audio_cache = audio_data
|
||||
# else:
|
||||
# # print(f"audio_data: {audio_data.shape}, audio_cache: {self.audio_cache.shape}")
|
||||
# if self.audio_cache.shape[0] > 0:
|
||||
# self.audio_cache = np.concatenate([self.audio_cache, audio_data], axis=0)
|
||||
|
||||
# if not is_end and self.audio_cache.shape[0] < self.chunk_partial_size:
|
||||
# return text_dict
|
||||
|
||||
# total_chunk_num = int((len(self.audio_cache)-1)/self.chunk_partial_size)
|
||||
|
||||
# if is_end:
|
||||
# # if the audio data is the end of a sentence, \
|
||||
# # we need to add one more chunk to the end to \
|
||||
# # ensure the end of the sentence is recognized correctly.
|
||||
# auto_det_end = True
|
||||
|
||||
# if auto_det_end:
|
||||
# total_chunk_num += 1
|
||||
|
||||
# # print(f"chunk_size: {self.chunk_size}, chunk_stride: {self.chunk_partial_size}, total_chunk_num: {total_chunk_num}, len: {len(self.audio_cache)}")
|
||||
# end_idx = None
|
||||
# for i in range(total_chunk_num):
|
||||
# if auto_det_end:
|
||||
# is_end = i == total_chunk_num - 1
|
||||
# start_idx = i*self.chunk_partial_size
|
||||
# if auto_det_end:
|
||||
# end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num-1 else -1
|
||||
# else:
|
||||
# end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num else -1
|
||||
# # print(f"cut part: {start_idx}:{end_idx}, is_end: {is_end}, i: {i}, total_chunk_num: {total_chunk_num}")
|
||||
# # t_stamp = time.time()
|
||||
|
||||
# speech_chunk = self.audio_cache[start_idx:end_idx]
|
||||
|
||||
# # TODO: exceptions processes
|
||||
# try:
|
||||
# res = self.asr_model.generate(input=speech_chunk, cache=self.asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
|
||||
# except ValueError as e:
|
||||
# print(f"ValueError: {e}")
|
||||
# continue
|
||||
# text_dict['text'].append(self.text_postprecess(res[0], data_id='text'))
|
||||
# # print(f"each chunk time: {time.time()-t_stamp}")
|
||||
|
||||
# if is_end:
|
||||
# self.audio_cache = None
|
||||
# self.asr_cache = {}
|
||||
# else:
|
||||
# if end_idx:
|
||||
# self.audio_cache = self.audio_cache[end_idx:] # cut the processed part from audio_cache
|
||||
# text_dict['is_end'] = is_end
|
||||
|
||||
# # print(f"text_dict: {text_dict}")
|
||||
# return text_dict
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue