1
0
Fork 0

feat: 使全局asr实例有一定并发能力

This commit is contained in:
Killua777 2024-05-13 10:44:58 +08:00
parent 11c429befa
commit 4974570f20
2 changed files with 236 additions and 46 deletions

View File

@ -223,18 +223,24 @@ async def sct_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
logger.error(f"用户输入处理函数发生错误: {str(e)}")
#语音识别
async def sct_asr_handler(user_input_q,llm_input_q,user_input_finish_event):
async def sct_asr_handler(session_id,user_input_q,llm_input_q,user_input_finish_event):
logger.debug("语音识别函数启动")
is_signup = False
try:
current_message = ""
while not (user_input_finish_event.is_set() and user_input_q.empty()):
if not is_signup:
asr.session_signup(session_id)
is_signup = True
audio_data = await user_input_q.get()
asr_result = asr.streaming_recognize(audio_data)
asr_result = asr.streaming_recognize(session_id,audio_data)
current_message += ''.join(asr_result['text'])
asr_result = asr.streaming_recognize(b'',is_end=True)
asr_result = asr.streaming_recognize(session_id,b'',is_end=True)
current_message += ''.join(asr_result['text'])
await llm_input_q.put(current_message)
asr.session_signout(session_id)
except Exception as e:
asr.session_signout(session_id)
logger.error(f"语音识别函数发生错误: {str(e)}")
logger.debug(f"接收到用户消息: {current_message}")
@ -305,12 +311,11 @@ async def streaming_chat_temporary_handler(ws: WebSocket, db, redis):
future_session_id = asyncio.Future()
future_response_type = asyncio.Future()
asyncio.create_task(sct_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,future_response_type,user_input_finish_event))
asyncio.create_task(sct_asr_handler(user_input_q,llm_input_q,user_input_finish_event))
session_id = await future_session_id #获取session_id
update_session_activity(session_id,db)
response_type = await future_response_type #获取返回类型
asyncio.create_task(sct_asr_handler(session_id,user_input_q,llm_input_q,user_input_finish_event))
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
@ -346,6 +351,7 @@ async def scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
is_future_done = True
if scl_data_json['text']:
await llm_input_q.put(scl_data_json['text'])
continue
if scl_data_json['meta_info']['is_end']:
user_input_frame = {"audio": scl_data_json['audio'], "is_end": True}
await user_input_q.put(user_input_frame)
@ -362,25 +368,31 @@ async def scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
break
#语音识别
async def scl_asr_handler(user_input_q,llm_input_q,input_finished_event,asr_finished_event):
async def scl_asr_handler(session_id,user_input_q,llm_input_q,input_finished_event,asr_finished_event):
logger.debug("语音识别函数启动")
is_signup = False
current_message = ""
while not (input_finished_event.is_set() and user_input_q.empty()):
try:
aduio_frame = await asyncio.wait_for(user_input_q.get(),timeout=3)
if not is_signup:
asr.session_signup(session_id)
is_signup = True
if aduio_frame['is_end']:
asr_result = asr.streaming_recognize(aduio_frame['audio'], is_end=True)
asr_result = asr.streaming_recognize(session_id,aduio_frame['audio'], is_end=True)
current_message += ''.join(asr_result['text'])
await llm_input_q.put(current_message)
logger.debug(f"接收到用户消息: {current_message}")
else:
asr_result = asr.streaming_recognize(aduio_frame['audio'])
asr_result = asr.streaming_recognize(session_id,aduio_frame['audio'])
current_message += ''.join(asr_result['text'])
except asyncio.TimeoutError:
continue
except Exception as e:
asr.session_signout(session_id)
logger.error(f"语音识别函数发生错误: {str(e)}")
break
asr.session_signout(session_id)
asr_finished_event.set()
#大模型调用
@ -455,7 +467,6 @@ async def streaming_chat_lasting_handler(ws,db,redis):
future_response_type = asyncio.Future()
asyncio.create_task(scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,future_response_type,input_finished_event))
asyncio.create_task(scl_asr_handler(user_input_q,llm_input_q,input_finished_event,asr_finished_event))
session_id = await future_session_id #获取session_id
update_session_activity(session_id,db)
@ -463,6 +474,7 @@ async def streaming_chat_lasting_handler(ws,db,redis):
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
asyncio.create_task(scl_asr_handler(session_id,user_input_q,llm_input_q,input_finished_event,asr_finished_event))
asyncio.create_task(scl_llm_handler(ws,session_id,response_type,llm_info,tts_info,db,redis,llm_input_q,asr_finished_event,chat_finished_event))
while not chat_finished_event.is_set():
@ -505,23 +517,27 @@ async def voice_call_audio_producer(ws,audio_q,future,input_finished_event):
#音频数据消费函数
async def voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event,asr_finished_event):
async def voice_call_audio_consumer(ws,session_id,audio_q,asr_result_q,input_finished_event,asr_finished_event):
logger.debug("音频数据消费者函数启动")
vad = VAD()
current_message = ""
vad_count = 0
is_signup = False
while not (input_finished_event.is_set() and audio_q.empty()):
try:
if not is_signup:
asr.session_signup(session_id)
is_signup = True
audio_data = await asyncio.wait_for(audio_q.get(),timeout=3)
if vad.is_speech(audio_data):
if vad_count > 0:
vad_count -= 1
asr_result = asr.streaming_recognize(audio_data)
asr_result = asr.streaming_recognize(session_id, audio_data)
current_message += ''.join(asr_result['text'])
else:
vad_count += 1
if vad_count >= 25: #连续25帧没有语音则认为说完了
asr_result = asr.streaming_recognize(audio_data, is_end=True)
asr_result = asr.streaming_recognize(session_id, audio_data, is_end=True)
if current_message:
logger.debug(f"检测到静默,用户输入为:{current_message}")
await asr_result_q.put(current_message)
@ -532,8 +548,10 @@ async def voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event
except asyncio.TimeoutError:
continue
except Exception as e:
asr.session_signout(session_id)
logger.error(f"音频数据消费者函数发生错误: {str(e)}")
break
asr.session_signout(session_id)
asr_finished_event.set()
#asr结果消费以及llm返回生产函数
@ -621,7 +639,6 @@ async def voice_call_handler(ws, db, redis):
future = asyncio.Future() #用于获取传输的session_id
asyncio.create_task(voice_call_audio_producer(ws,audio_q,future,input_finished_event)) #创建音频数据生产者
asyncio.create_task(voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event,asr_finished_event)) #创建音频数据消费者
#获取session内容
session_id = await future #获取session_id
@ -629,6 +646,7 @@ async def voice_call_handler(ws, db, redis):
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
asyncio.create_task(voice_call_audio_consumer(ws,session_id,audio_q,asr_result_q,input_finished_event,asr_finished_event)) #创建音频数据消费者
asyncio.create_task(voice_call_llm_handler(ws,session_id,llm_info,tts_info,db,redis,asr_result_q,asr_finished_event,voice_call_end_event)) #创建llm处理者
while not voice_call_end_event.is_set():
await asyncio.sleep(3)

View File

@ -41,11 +41,12 @@ class FunAutoSpeechRecognizer(STTBase):
self.chunk_size = [0, 10, 5]
else:
raise ValueError("`chunk_ms` should be 480 or 600, and type is int.")
self.chunk_partial_size = self.chunk_size[1] * 960
self.audio_cache = None
self.chunk_partial_size = self.chunk_size[1] * 960
self.audio_cache = {}
self.asr_cache = {}
# self.audio_cache = None
# self.asr_cache = {}
self._init_asr()
@ -79,24 +80,22 @@ class FunAutoSpeechRecognizer(STTBase):
# 随机初始化一段音频数据
init_audio_data = np.random.randint(-32768, 32767, size=self.chunk_partial_size, dtype=np.int16)
self.asr_model.generate(input=init_audio_data, cache=self.asr_cache, is_final=False, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
self.audio_cache = None
self.audio_cache = {}
self.asr_cache = {}
# print("init ASR model done.")
def recognize(self, audio_data):
"""recognize audio data to text"""
audio_data = self.check_audio_type(audio_data)
result = self.asr_model.generate(input=audio_data,
batch_size_s=300,
hotword=self.hotwords)
# print(result)
text = ''
for res in result:
text += res['text']
return text
def streaming_recognize(self,
# when chat trying to use asr , sign up
def session_signup(self,session_id):
self.audio_cache[session_id] = None
self.asr_cache[session_id] = {}
# when chat finish using asr , sign out
def session_signout(self,session_id):
del self.audio_cache[session_id]
del self.asr_cache[session_id]
def streaming_recognize(self,
session_id,
audio_data,
is_end=False,
auto_det_end=False):
@ -108,19 +107,22 @@ class FunAutoSpeechRecognizer(STTBase):
auto_det_end: bool, whether to automatically detect the end of a audio data
"""
text_dict = dict(text=[], is_end=is_end)
audio_cache = self.audio_cache[session_id]
asr_cache = self.asr_cache[session_id]
audio_data = self.check_audio_type(audio_data)
if self.audio_cache is None:
self.audio_cache = audio_data
if audio_cache is None:
audio_cache = audio_data
else:
# print(f"audio_data: {audio_data.shape}, audio_cache: {self.audio_cache.shape}")
if self.audio_cache.shape[0] > 0:
self.audio_cache = np.concatenate([self.audio_cache, audio_data], axis=0)
if audio_cache.shape[0] > 0:
audio_cache = np.concatenate([audio_cache, audio_data], axis=0)
if not is_end and self.audio_cache.shape[0] < self.chunk_partial_size:
if not is_end and audio_cache.shape[0] < self.chunk_partial_size:
self.audio_cache[session_id] = audio_cache
return text_dict
total_chunk_num = int((len(self.audio_cache)-1)/self.chunk_partial_size)
total_chunk_num = int((len(audio_cache)-1)/self.chunk_partial_size)
if is_end:
# if the audio data is the end of a sentence, \
@ -131,7 +133,6 @@ class FunAutoSpeechRecognizer(STTBase):
if auto_det_end:
total_chunk_num += 1
# print(f"chunk_size: {self.chunk_size}, chunk_stride: {self.chunk_partial_size}, total_chunk_num: {total_chunk_num}, len: {len(self.audio_cache)}")
end_idx = None
for i in range(total_chunk_num):
if auto_det_end:
@ -144,11 +145,11 @@ class FunAutoSpeechRecognizer(STTBase):
# print(f"cut part: {start_idx}:{end_idx}, is_end: {is_end}, i: {i}, total_chunk_num: {total_chunk_num}")
# t_stamp = time.time()
speech_chunk = self.audio_cache[start_idx:end_idx]
speech_chunk = audio_cache[start_idx:end_idx]
# TODO: exceptions processes
try:
res = self.asr_model.generate(input=speech_chunk, cache=self.asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
res = self.asr_model.generate(input=speech_chunk, cache=asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
except ValueError as e:
print(f"ValueError: {e}")
continue
@ -156,15 +157,186 @@ class FunAutoSpeechRecognizer(STTBase):
# print(f"each chunk time: {time.time()-t_stamp}")
if is_end:
self.audio_cache = None
self.asr_cache = {}
audio_cache = None
asr_cache = {}
else:
if end_idx:
self.audio_cache = self.audio_cache[end_idx:] # cut the processed part from audio_cache
audio_cache = audio_cache[end_idx:] # cut the processed part from audio_cache
text_dict['is_end'] = is_end
# print(f"text_dict: {text_dict}")
self.audio_cache[session_id] = audio_cache
self.asr_cache[session_id] = asr_cache
return text_dict
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ####################################################### #
# FunAutoSpeechRecognizer: https://github.com/alibaba-damo-academy/FunASR
# ####################################################### #
# import io
# import numpy as np
# import base64
# import wave
# from funasr import AutoModel
# from .base_stt import STTBase
# def decode_str2bytes(data):
# # 将Base64编码的字节串解码为字节串
# if data is None:
# return None
# return base64.b64decode(data.encode('utf-8'))
# class FunAutoSpeechRecognizer(STTBase):
# def __init__(self,
# model_path="paraformer-zh-streaming",
# device="cuda",
# RATE=16000,
# cfg_path=None,
# debug=False,
# chunk_ms=480,
# encoder_chunk_look_back=4,
# decoder_chunk_look_back=1,
# **kwargs):
# super().__init__(RATE=RATE, cfg_path=cfg_path, debug=debug)
# self.asr_model = AutoModel(model=model_path, device=device, **kwargs)
# self.encoder_chunk_look_back = encoder_chunk_look_back #number of chunks to lookback for encoder self-attention
# self.decoder_chunk_look_back = decoder_chunk_look_back #number of encoder chunks to lookback for decoder cross-attention
# #[0, 8, 4] 480ms, [0, 10, 5] 600ms
# if chunk_ms == 480:
# self.chunk_size = [0, 8, 4]
# elif chunk_ms == 600:
# self.chunk_size = [0, 10, 5]
# else:
# raise ValueError("`chunk_ms` should be 480 or 600, and type is int.")
# self.chunk_partial_size = self.chunk_size[1] * 960
# self.audio_cache = None
# self.asr_cache = {}
# self._init_asr()
# def check_audio_type(self, audio_data):
# """check audio data type and convert it to bytes if necessary."""
# if isinstance(audio_data, bytes):
# pass
# elif isinstance(audio_data, list):
# audio_data = b''.join(audio_data)
# elif isinstance(audio_data, str):
# audio_data = decode_str2bytes(audio_data)
# elif isinstance(audio_data, io.BytesIO):
# wf = wave.open(audio_data, 'rb')
# audio_data = wf.readframes(wf.getnframes())
# elif isinstance(audio_data, np.ndarray):
# pass
# else:
# raise TypeError(f"audio_data must be bytes, list, str, \
# io.BytesIO or numpy array, but got {type(audio_data)}")
# if isinstance(audio_data, bytes):
# audio_data = np.frombuffer(audio_data, dtype=np.int16)
# elif isinstance(audio_data, np.ndarray):
# if audio_data.dtype != np.int16:
# audio_data = audio_data.astype(np.int16)
# else:
# raise TypeError(f"audio_data must be bytes or numpy array, but got {type(audio_data)}")
# return audio_data
# def _init_asr(self):
# # 随机初始化一段音频数据
# init_audio_data = np.random.randint(-32768, 32767, size=self.chunk_partial_size, dtype=np.int16)
# self.asr_model.generate(input=init_audio_data, cache=self.asr_cache, is_final=False, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
# self.audio_cache = None
# self.asr_cache = {}
# # print("init ASR model done.")
# def recognize(self, audio_data):
# """recognize audio data to text"""
# audio_data = self.check_audio_type(audio_data)
# result = self.asr_model.generate(input=audio_data,
# batch_size_s=300,
# hotword=self.hotwords)
# # print(result)
# text = ''
# for res in result:
# text += res['text']
# return text
# def streaming_recognize(self,
# audio_data,
# is_end=False,
# auto_det_end=False):
# """recognize partial result
# Args:
# audio_data: bytes or numpy array, partial audio data
# is_end: bool, whether the audio data is the end of a sentence
# auto_det_end: bool, whether to automatically detect the end of a audio data
# """
# text_dict = dict(text=[], is_end=is_end)
# audio_data = self.check_audio_type(audio_data)
# if self.audio_cache is None:
# self.audio_cache = audio_data
# else:
# # print(f"audio_data: {audio_data.shape}, audio_cache: {self.audio_cache.shape}")
# if self.audio_cache.shape[0] > 0:
# self.audio_cache = np.concatenate([self.audio_cache, audio_data], axis=0)
# if not is_end and self.audio_cache.shape[0] < self.chunk_partial_size:
# return text_dict
# total_chunk_num = int((len(self.audio_cache)-1)/self.chunk_partial_size)
# if is_end:
# # if the audio data is the end of a sentence, \
# # we need to add one more chunk to the end to \
# # ensure the end of the sentence is recognized correctly.
# auto_det_end = True
# if auto_det_end:
# total_chunk_num += 1
# # print(f"chunk_size: {self.chunk_size}, chunk_stride: {self.chunk_partial_size}, total_chunk_num: {total_chunk_num}, len: {len(self.audio_cache)}")
# end_idx = None
# for i in range(total_chunk_num):
# if auto_det_end:
# is_end = i == total_chunk_num - 1
# start_idx = i*self.chunk_partial_size
# if auto_det_end:
# end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num-1 else -1
# else:
# end_idx = (i+1)*self.chunk_partial_size if i < total_chunk_num else -1
# # print(f"cut part: {start_idx}:{end_idx}, is_end: {is_end}, i: {i}, total_chunk_num: {total_chunk_num}")
# # t_stamp = time.time()
# speech_chunk = self.audio_cache[start_idx:end_idx]
# # TODO: exceptions processes
# try:
# res = self.asr_model.generate(input=speech_chunk, cache=self.asr_cache, is_final=is_end, chunk_size=self.chunk_size, encoder_chunk_look_back=self.encoder_chunk_look_back, decoder_chunk_look_back=self.decoder_chunk_look_back)
# except ValueError as e:
# print(f"ValueError: {e}")
# continue
# text_dict['text'].append(self.text_postprecess(res[0], data_id='text'))
# # print(f"each chunk time: {time.time()-t_stamp}")
# if is_end:
# self.audio_cache = None
# self.asr_cache = {}
# else:
# if end_idx:
# self.audio_cache = self.audio_cache[end_idx:] # cut the processed part from audio_cache
# text_dict['is_end'] = is_end
# # print(f"text_dict: {text_dict}")
# return text_dict