forked from killua/TakwayDisplayPlatform
Compare commits
4 Commits
bing-patch
...
master
Author | SHA1 | Date |
---|---|---|
|
21f9c86c46 | |
|
18dbabdd19 | |
|
c58c7c9a5b | |
|
2b98752db1 |
|
@ -0,0 +1,48 @@
|
|||
# 部署步骤
|
||||
|
||||
1. 将该仓库clone到本地
|
||||
2. 创建虚拟环境并启动
|
||||
|
||||
``` shell
|
||||
conda create -n takway python=3.9
|
||||
conda activate takway
|
||||
```
|
||||
|
||||
3. cd进入仓库目录下,安装依赖
|
||||
|
||||
``` shell
|
||||
cd ~/TakwayDisplayPlatform
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
4. 在./utils/目录下创建vits_model文件夹
|
||||
|
||||
从[链接](https://huggingface.co/spaces/zomehwh/vits-uma-genshin-honkai/tree/main/model)下载vits_model并放入该文件夹下,只需下载config.json和G_953000.pth即可
|
||||
|
||||
5. 在./utils/bert_vits2/目录下创建bert,slm文件夹
|
||||
|
||||
从[链接1](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large),[链接2](https://huggingface.co/microsoft/deberta-v3-large),[链接3](https://huggingface.co/ku-nlp/deberta-v2-large-japanese-char-wwm)下载模型,放入bert目录下
|
||||
|
||||
从[链接4](https://huggingface.co/microsoft/wavlm-base-plus)下载模型,放入slm目录下
|
||||
|
||||
在./utils/bert_vits2/bert目录下创建bert_models.json文件,填入如下内容
|
||||
|
||||
``` json
|
||||
{
|
||||
"deberta-v2-large-japanese-char-wwm": {
|
||||
"repo_id": "ku-nlp/deberta-v2-large-japanese-char-wwm",
|
||||
"files": ["pytorch_model.bin"]
|
||||
},
|
||||
"chinese-roberta-wwm-ext-large": {
|
||||
"repo_id": "hfl/chinese-roberta-wwm-ext-large",
|
||||
"files": ["pytorch_model.bin"]
|
||||
},
|
||||
"deberta-v3-large": {
|
||||
"repo_id": "microsoft/deberta-v3-large",
|
||||
"files": ["spm.model", "pytorch_model.bin"]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
6. 在 ./utils/bert_vits2/data/mix/目录下创建models文件夹,并放入预训练模型250000_G.pth
|
||||
7. 回到根目录,`python main.py`启动程序
|
23
README.md
23
README.md
|
@ -1,23 +0,0 @@
|
|||
# 部署步骤
|
||||
|
||||
1. 将该仓库clone到本地
|
||||
2. 创建虚拟环境并启动
|
||||
|
||||
``` shell
|
||||
conda create -n takway python=3.9
|
||||
conda activate takway
|
||||
```
|
||||
|
||||
3. cd进入仓库目录下,安装依赖
|
||||
|
||||
``` shell
|
||||
cd ~/TakwayDisplayPlatform
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
4. 在utils/目录下创建vits_model文件夹
|
||||
|
||||
从[链接](https://huggingface.co/spaces/zomehwh/vits-uma-genshin-honkai/tree/main/model)下载vits_model并放入该文件夹下,只需下载config.json和G_953000.pth即可
|
||||
|
||||
5. 回到仓库根目录下运行`python main.py`启动程序
|
||||
|
|
@ -6,7 +6,8 @@ from .abstract import *
|
|||
from .public import *
|
||||
from .exception import *
|
||||
from .dependency import get_logger
|
||||
from utils.vits_utils import TextToSpeech
|
||||
from utils.vits_utils import TextToSpeech as VITS_TextToSpeech
|
||||
from utils.bert_vits2_utils import TextToSpeech as BertVits_TextToSpeech
|
||||
from config import Config
|
||||
import threading
|
||||
import requests
|
||||
|
@ -17,7 +18,11 @@ import time
|
|||
import json
|
||||
|
||||
# ----------- 初始化vits ----------- #
|
||||
vits = TextToSpeech()
|
||||
vits = VITS_TextToSpeech()
|
||||
# ---------------------------------- #
|
||||
|
||||
# -------- 初始化bert-vits --------- #
|
||||
bert_vits = BertVits_TextToSpeech()
|
||||
# ---------------------------------- #
|
||||
|
||||
# ---------- 初始化logger ---------- #
|
||||
|
@ -294,6 +299,14 @@ class VITS_TTS(TTS):
|
|||
def synthetize(self, assistant, text):
|
||||
tts_info = json.loads(assistant.tts_info)
|
||||
return vits.synthesize(text, tts_info)
|
||||
|
||||
class BertVits_TTS(TTS):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def synthetize(self, assistant, text):
|
||||
tts_info = json.loads(assistant.tts_info)
|
||||
return bert_vits.synthesize(text, tts_info)
|
||||
# --------------------------------- #
|
||||
|
||||
|
||||
|
@ -319,6 +332,8 @@ class TTSFactory:
|
|||
def create_tts(self,tts_type:str) -> TTS:
|
||||
if tts_type == 'VITS':
|
||||
return VITS_TTS()
|
||||
if tts_type == 'BertVits':
|
||||
return BertVits_TTS()
|
||||
# --------------------------------- #
|
||||
|
||||
|
||||
|
@ -420,7 +435,12 @@ class Agent():
|
|||
self.tts_audio_service_chain.add_service(TTSAudioRecordService())
|
||||
|
||||
def init_recorder(self,user_id):
|
||||
self.recorder = Recorder(user_id)
|
||||
input_sr = 16000
|
||||
if isinstance(self.tts, BertVits_TTS):
|
||||
output_sr = 44100
|
||||
elif isinstance(self.tts, VITS_TTS):
|
||||
output_sr = 22050
|
||||
self.recorder = Recorder(user_id,input_sr,output_sr)
|
||||
|
||||
# 对用户输入的音频进行预处理
|
||||
def user_audio_process(self, audio):
|
||||
|
|
|
@ -30,12 +30,12 @@ class SentenceSegmentation():
|
|||
return self.__sentenceSegmentation(llm_chunk)
|
||||
|
||||
class Recorder:
|
||||
def __init__(self, user_id):
|
||||
def __init__(self, user_id, input_sr, output_sr):
|
||||
self.input_wav_path = 'storage/wav/'+ datetime.now().strftime('%Y%m%d%H%M%S') + 'U' + user_id + 'i.wav'
|
||||
self.output_wav_path = 'storage/wav/'+ datetime.now().strftime('%Y%m%d%H%M%S') + 'U' + user_id + 'o.wav'
|
||||
self.out_put_text_path = 'storage/record/'+ datetime.now().strftime('%Y%m%d%H%M%S') + 'U' + user_id + 'o.txt'
|
||||
self.input_sr = 16000
|
||||
self.output_sr = 22050
|
||||
self.input_sr = input_sr
|
||||
self.output_sr = output_sr
|
||||
self.user_audio = b''
|
||||
self.tts_audio = b''
|
||||
self.input_text = ""
|
||||
|
|
|
@ -33,8 +33,13 @@ class update_assistant_deatil_params_request(BaseModel):
|
|||
platform:str
|
||||
model :str
|
||||
temperature :float
|
||||
tts_engine:str
|
||||
speaker_id:int
|
||||
length_scale:float
|
||||
language:str
|
||||
style_text:str
|
||||
style_weight:float
|
||||
|
||||
|
||||
class update_assistant_max_tokens_request(BaseModel):
|
||||
max_tokens:int
|
|
@ -1,8 +1,5 @@
|
|||
class Config:
|
||||
SQLITE_URL = 'sqlite:///takway.db'
|
||||
ASR = "XF" #在此处选择语音识别引擎
|
||||
LLM = "MINIMAX" #在此处选择大模型
|
||||
TTS = "VITS" #在此处选择语音合成引擎
|
||||
LOG_LEVEL = "DEBUG"
|
||||
class UVICORN:
|
||||
HOST = '0.0.0.0'
|
||||
|
|
17
main.py
17
main.py
|
@ -122,7 +122,16 @@ async def update_assistant_deatil_params(id: str,request: update_assistant_deati
|
|||
llm_info['temperature'] = request.temperature
|
||||
tts_info['speaker_id'] = request.speaker_id
|
||||
tts_info['length_scale'] = request.length_scale
|
||||
tts_info['language'] = request.language
|
||||
tts_info['style_text'] = request.style_text
|
||||
tts_info['style_weight'] = request.style_weight
|
||||
tts_info['sdp_ratio'] = 0.5
|
||||
tts_info['opt_cut_by_send'] = False
|
||||
tts_info['interval_between_para'] = 1.0
|
||||
tts_info['interval_between_sent'] = 0.2
|
||||
tts_info['en_ratio'] = 1.0
|
||||
user_info['llm_type'] = request.platform
|
||||
user_info['tts_type'] = request.tts_engine
|
||||
assistant.llm_info = json.dumps(llm_info, ensure_ascii=False)
|
||||
assistant.tts_info = json.dumps(tts_info, ensure_ascii=False)
|
||||
assistant.user_info = json.dumps(user_info, ensure_ascii=False)
|
||||
|
@ -227,15 +236,7 @@ async def streaming_chat(ws: WebSocket):
|
|||
agent.recorder.input_text = prompt
|
||||
logger.debug("开始调用大模型")
|
||||
llm_frames = await agent.chat(assistant, prompt)
|
||||
|
||||
start_time = time.time()
|
||||
is_first_response = True
|
||||
|
||||
for llm_frame in llm_frames:
|
||||
if is_first_response:
|
||||
end_time = time.time()
|
||||
logger.debug(f"第一帧返回耗时:{round(end_time-start_time,3)}s")
|
||||
is_first_response = False
|
||||
resp_msgs = agent.llm_msg_process(llm_frame)
|
||||
for resp_msg in resp_msgs:
|
||||
llm_text += resp_msg
|
||||
|
|
|
@ -0,0 +1,23 @@
|
|||
import paho.mqtt.client as mqtt
|
||||
|
||||
# MQTT Broker信息
|
||||
broker = '127.0.0.1'
|
||||
port = 1883
|
||||
topic = 'audio/test'
|
||||
|
||||
# 音频文件路径
|
||||
audio_file_path = 'tmp2.wav'
|
||||
|
||||
def publish_audio():
|
||||
client = mqtt.Client()
|
||||
client.connect(broker, port)
|
||||
|
||||
with open(audio_file_path, 'rb') as audio_file:
|
||||
audio_data = audio_file.read()
|
||||
|
||||
client.publish(topic, audio_data)
|
||||
client.disconnect()
|
||||
|
||||
if __name__ == "__main__":
|
||||
publish_audio()
|
||||
print("Audio published successfully.")
|
|
@ -0,0 +1,33 @@
|
|||
import paho.mqtt.client as mqtt
|
||||
import threading
|
||||
import time
|
||||
|
||||
# MQTT Broker信息
|
||||
broker = '127.0.0.1'
|
||||
port = 1883
|
||||
topic = 'audio/test'
|
||||
|
||||
# 音频文件路径列表
|
||||
audio_file_paths = ['tmp2.wav', 'tmp3.wav', 'tmp4.wav'] # 添加多个音频文件路径
|
||||
|
||||
def publish_audio(file_path):
|
||||
client = mqtt.Client()
|
||||
client.connect(broker, port)
|
||||
|
||||
with open(file_path, 'rb') as audio_file:
|
||||
audio_data = audio_file.read()
|
||||
|
||||
client.publish(topic, audio_data)
|
||||
client.disconnect()
|
||||
print(f"Audio from {file_path} published successfully.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
threads = []
|
||||
for file_path in audio_file_paths:
|
||||
thread = threading.Thread(target=publish_audio, args=(file_path,))
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
time.sleep(1) # 可选:给每个线程一些间隔时间
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
|
@ -0,0 +1,33 @@
|
|||
import paho.mqtt.client as mqtt
|
||||
from pydub import AudioSegment
|
||||
import io
|
||||
|
||||
# MQTT Broker信息
|
||||
broker = '127.0.0.1'
|
||||
port = 1883
|
||||
topic = 'audio/test'
|
||||
output_file_path = 'received_audio.wav'
|
||||
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
print("Connected with result code " + str(rc))
|
||||
client.subscribe(topic)
|
||||
|
||||
def on_message(client, userdata, msg):
|
||||
print("Audio received")
|
||||
audio_data = msg.payload
|
||||
audio = AudioSegment.from_file(io.BytesIO(audio_data), format="wav")
|
||||
# 将音频保存为文件
|
||||
with open(output_file_path, 'wb') as f:
|
||||
f.write(audio_data)
|
||||
print(f"Audio saved as {output_file_path}")
|
||||
|
||||
def subscribe_audio():
|
||||
client = mqtt.Client()
|
||||
client.on_connect = on_connect
|
||||
client.on_message = on_message
|
||||
|
||||
client.connect(broker, port)
|
||||
client.loop_forever()
|
||||
|
||||
if __name__ == "__main__":
|
||||
subscribe_audio()
|
|
@ -0,0 +1,42 @@
|
|||
import paho.mqtt.client as mqtt
|
||||
from pydub import AudioSegment
|
||||
import io
|
||||
import threading
|
||||
|
||||
# MQTT Broker信息
|
||||
broker = '127.0.0.1'
|
||||
port = 1883
|
||||
topic = 'audio/test'
|
||||
output_file_path = 'received_audio.wav'
|
||||
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
print("Connected with result code " + str(rc))
|
||||
client.subscribe(topic)
|
||||
|
||||
def handle_audio(audio_data):
|
||||
# 将音频保存为文件
|
||||
with open(output_file_path, 'wb') as f:
|
||||
f.write(audio_data)
|
||||
print(f"Audio saved as {output_file_path}")
|
||||
|
||||
def on_message(client, userdata, msg):
|
||||
print("Audio received")
|
||||
audio_data = msg.payload
|
||||
# 使用线程来处理音频
|
||||
audio_thread = threading.Thread(target=handle_audio, args=(audio_data,))
|
||||
audio_thread.start()
|
||||
|
||||
def subscribe_audio():
|
||||
client = mqtt.Client()
|
||||
client.on_connect = on_connect
|
||||
client.on_message = on_message
|
||||
|
||||
client.connect(broker, port)
|
||||
client.loop_forever()
|
||||
|
||||
def mqtt_thread():
|
||||
subscribe_audio()
|
||||
|
||||
if __name__ == "__main__":
|
||||
mqtt_thread = threading.Thread(target=mqtt_thread)
|
||||
mqtt_thread.start()
|
|
@ -14,3 +14,4 @@ librosa
|
|||
aiohttp
|
||||
'volcengine-python-sdk[ark]'
|
||||
zhipuai
|
||||
pyopenjtalk
|
13
test.py
13
test.py
|
@ -1,13 +0,0 @@
|
|||
from utils.bert_vits2_utils import TextToSpeech
|
||||
import soundfile as sf
|
||||
tts = TextToSpeech()
|
||||
tts.print_speakers_info()
|
||||
|
||||
audio, sample_rate= tts.synthesize("你好,我好开心", # 文本
|
||||
0, # 说话人 id
|
||||
style_text="我很难过!!!!呜呜呜!!!", # 情绪prompt,当language=="ZH" 才有效
|
||||
style_weight=0.9, # 情绪prompt权重
|
||||
language="mix", # 语言类型,包括 "ZH" "EN" "mix"
|
||||
en_ratio=1.) # mix语言类型下,英文文本速度,越大速度越慢
|
||||
save_path = "./tmp2.wav"
|
||||
sf.write(save_path, audio, sample_rate)
|
|
@ -395,29 +395,28 @@ class TextToSpeech:
|
|||
|
||||
def synthesize(self,
|
||||
text,
|
||||
speaker_idx=0, # self.speakers 的 index,指定说话
|
||||
sdp_ratio=0.5,
|
||||
noise_scale=0.6,
|
||||
noise_scale_w=0.9,
|
||||
length_scale=1.0, # 越大语速越慢
|
||||
language="mix", # ["ZH", "EN", "mix"] 三选一
|
||||
opt_cut_by_send=False, # 按句切分 在按段落切分的基础上再按句子切分文本
|
||||
interval_between_para=1.0, # 段间停顿(秒),需要大于句间停顿才有效
|
||||
interval_between_sent=0.2, # 句间停顿(秒),勾选按句切分才生效
|
||||
audio_prompt=None,
|
||||
text_prompt="",
|
||||
prompt_mode="Text prompts",
|
||||
style_text="", # "使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n"
|
||||
# "**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)\n\n"
|
||||
# "效果较不明确,留空即为不使用该功能"
|
||||
style_weight=0.7, # "主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本
|
||||
en_ratio=1.0 # 中英混合时,英文速度控制,越大英文速度越慢
|
||||
tts_info,
|
||||
):
|
||||
"""
|
||||
return: audio, sample_rate
|
||||
"""
|
||||
speaker_id = tts_info['speaker_id'] # self.speakers 的 index,指定说话
|
||||
sdp_ratio = tts_info['sdp_ratio']
|
||||
noise_scale = tts_info['noise_scale']
|
||||
noise_scale_w = tts_info['noise_scale_w']
|
||||
length_scale = tts_info['length_scale']
|
||||
language = tts_info['language'] # ["ZH", "EN", "mix"] 三选一
|
||||
opt_cut_by_send = tts_info['opt_cut_by_send']
|
||||
interval_between_para = tts_info['interval_between_para'] # 段间停顿(秒),需要大于句间停顿才有效
|
||||
interval_between_sent = tts_info['interval_between_sent'] # 句间停顿(秒),勾选按句切分才生效
|
||||
audio_prompt = None
|
||||
text_prompt = ""
|
||||
prompt_mode = "Text prompts"
|
||||
style_text = tts_info['style_text']
|
||||
style_weight = tts_info['style_weight']
|
||||
en_ratio = tts_info['en_ratio']
|
||||
|
||||
speaker = self.speakers[speaker_idx]
|
||||
speaker = self.speakers[speaker_id]
|
||||
|
||||
if language == "mix":
|
||||
language, text = self.format_utils(text, speaker)
|
||||
|
@ -455,9 +454,17 @@ class TextToSpeech:
|
|||
style_weight
|
||||
)
|
||||
|
||||
# return text_output, audio_output
|
||||
return audio_output[1], audio_output[0]
|
||||
return self.convert_numpy_to_bytes(audio_output[1])
|
||||
|
||||
def print_speakers_info(self):
|
||||
for i, speaker in enumerate(self.speakers):
|
||||
print(f"id: {i}, speaker: {speaker}")
|
||||
|
||||
def convert_numpy_to_bytes(self, audio_data):
|
||||
if isinstance(audio_data, np.ndarray):
|
||||
if audio_data.dtype == np.dtype('float32'):
|
||||
audio_data = np.int16(audio_data * np.iinfo(np.int16).max)
|
||||
audio_data = audio_data.tobytes()
|
||||
return audio_data
|
||||
else:
|
||||
raise TypeError("audio_data must be a numpy array")
|
||||
|
|
Loading…
Reference in New Issue